scholarly journals Size Effects of Brittle Particles in Aerosol Deposition—Molecular Dynamics Simulation

2021 ◽  
Vol 30 (3) ◽  
pp. 503-522 ◽  
Author(s):  
Bahman Daneshian ◽  
Frank Gaertner ◽  
Hamid Assadi ◽  
Daniel Hoeche ◽  
Wolfgang Weber ◽  
...  

AbstractUp to now, the role of particle sizes on the impact behavior of ceramic particles in aerosol deposition not yet fully understood. Hence, with the aim to supply a more general understanding, modeling series of low strain rate compression and high-speed impact were performed by molecular dynamics on single-crystalline particles in sizes of 10-300 nm that are tuned to match mechanical properties of TiO2-anatase. The modeling results reveal that particles with original diameter of 25-75 nm exhibit three different impact behaviors that could be distinguished as (i) rebounding, (ii) bonding and (iii) fragmentation, depending on their initial impact velocity. In contrast, particles larger than 75 nm do not exhibit the bonding behavior. Detailed stress and strain field distributions reveal that combination of “localized inelastic deformation” along the slip systems and “shear localization” cause bonding of the small and large particles to the substrate. The analyses of associated temperature rise by the inelastic deformation revealed that heat diffusion at these small scales depend on size. Whereas small particles could reach a rather homogeneous temperature distribution, the evolved heat in the larger ones keeps rather localized to areas of highest deformation and may support deformation and the formation of dense layers in aerosol deposition.

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


Author(s):  
Yangqing Dou ◽  
Yucheng Liu ◽  
Wilburn Whittington ◽  
Jonathan Miller

Coefficients and constants of a microstructure-based internal state variable (ISV) plasticity damage model for pure copper have been calibrated and used for damage modeling and simulation. Experimental stress-strain curves obtained from Cu samples at different strain rate and temperature levels provide a benchmark for the calibration work. Instron quasi-static tester and split-Hopkinson pressure bar are used to obtain low-to-high strain rates. Calibration process and techniques are described in this paper. The calibrated material model is used for high-speed impact analysis to predict the impact properties of Cu. In the numerical impact scenario, a 100 mm by 100 mm Cu plate with a thickness of 10 mm will be penetrated by a 50 mm-long Ni rod with a diameter of 10mm. The thickness of 10 mm was selected for the Cu plate so that the Ni-Cu penetration through the thickness can be well observed through the simulations and the effects of the ductility of Cu on its plasticity deformation during the penetration can be displayed. Also, that thickness had been used by some researchers when investigating penetration mechanics of other materials. Therefore the penetration resistance of Cu can be compared to that of other metallic materials based on the simulation results obtained from this study. Through this study, the efficiency of this ISV model in simulating high-speed impact process is verified. Functions and roles of each of material constant in that model are also demonstrated.


1991 ◽  
Vol 239 ◽  
Author(s):  
Fred M. Kimock ◽  
Alex J. Hsieh ◽  
Peter G. Dehmer ◽  
Pearl W. Yip

ABSTRACTWe report on a recently commercialized Diamond-Like Carbon (DLC) coating that has been deposited on polycarbonate at near room temperature, via a unique ion beam system. Aspects of high speed impact behavior, chemical resistance, abrasion resistance, and thermal stability of the coating are examined. Results of scanning electron microscopy studies indicate that adhesion of the DLC coating is very good; no delamination of the coating was found on ballistically tested specimens. The well-bonded DLC coating did not cause the impact performance of polycarbonate to become brittle. Chemical exposure test results show that the DLC coating is capable of protecting polycarbonate from chemical attack by aggressive organic liquids. These ion beam deposited DLC coatings have considerable potential as protective coatings for optical systems.


Sign in / Sign up

Export Citation Format

Share Document