Spatial variability of soil microbial indices in common alder COMMON ALDER (Alnus glutinosa) stands using a geostatistical approach in northern Iran

2018 ◽  
Vol 30 (2) ◽  
pp. 679-688 ◽  
Author(s):  
Neda Ghorbanzadeh ◽  
Ali Salehi ◽  
Hassan Pourbabaei ◽  
Ali Ashraf Soltani Tolarod ◽  
Seyed Jalil Alavi
2020 ◽  
Vol 14 (4) ◽  
pp. 597-608
Author(s):  
Mohammad Ajami ◽  
Ahmad Heidari ◽  
Farhad Khormali ◽  
Mojtaba Zeraatpisheh ◽  
Manouchehr Gorji ◽  
...  

2021 ◽  
Author(s):  
Brivaldo Gomes de Almeida ◽  
Bruno Campos Mantovanelli ◽  
Thiago Rodrigo Schossler ◽  
Fernando José Freire ◽  
Edivan Rodrigues de Souza ◽  
...  

<p>Geostatistical and multivariate techniques have been widely used to identify and characterize the soil spatial variability, as well as to detect possible relationships between soil properties and management. Besides that, these techniques provide information regarding the spatial and temporal structural changes of soils to support better decision-making processes and management practices. Although the Zona da Mata region is a reference for sugarcane production in the northeast of Brazil, only a few studies have been carried out to clarify the effects of different management on soil physical attributes by using geostatistical and multivariate techniques. Thus, the objectives of this study were: (I) to characterize the spatial distribution of soils physical attributes under rainfed and irrigated sugarcane cultivations; (II) to identify the minimum sampling for the determination of soil physical attributes; (III) to detect the effects of the different management on soil physical attributes based on the principal component analysis (PCA). The study was carried out in the agricultural area of the Carpina Sugarcane Experimental Station of the Federal Rural University of Pernambuco, 7º51’13”S, 35º14’10”W, characterized by a Typic Hapludult with sandy clay loam soil texture. The investigated plot, cultivated with sugarcane, included a rainfed and an irrigated treatment in which a sprinkler system was installed according to a 12x12m grid. The interval between consecutive watering was fixed in two days, whereas irrigation depth was calculated to replace crop evapotranspiration (ETc) and accounting for the effective precipitation of the period. Daily ETc was estimated based on crop coefficient and reference evapotranspiration (ETo) indirectly obtained through a class A evaporation pan. In both treatments, the soil spatial variability was determined according to a 56x32m grid, on 32 soil samples collected in the 0.0-0.1m soil layer, spaced 7x8m, and georeferenced with a global position system. The soil was physically characterized according to the following attributes: bulk density (BD), soil penetration resistance (SPR), macroporosity (Macro), mesoporosity (Meso), microporosity (Micro), total porosity (TP), saturated hydraulic conductivity (Ksat), gravimetric soil water content (SWCg), geometric mean diameter (GMD) and mean weight diameter (MWD). The results of the descriptive statistics showed that among the studied attributes, Ksat, SPR, and Macro presented higher CV values, equal to 63 and 69%, 35 and 40%, and 32 and 44%, under rainfed and irrigated conditions, respectively. The minimum sampling, adequate to characterize the different soil attributes, resulted in general smaller in the rainfed area, characterized by higher homogeneity. Thus, the GMD, SWCg (both with 2 points ha<sup>-1</sup>), and SPR (with 6 points ha<sup>-1</sup>) were identified as the soil physical attributes requiring the lowest sample density; on the other hand, MWD and Ksat, with 14 and 15 points ha<sup>-1</sup>, respectively, required the highest number of samples. Pearson’s correlation analysis evidenced that soil BD was the most influential physical attribute in the studied areas, with a significant and inverse effect in most of the investigated attributes. The geostatistical approach associated with the multivariate PCA provided to understand the relationships between the spatial distribution patterns associated with irrigated and rainfed management and soil physical properties.</p>


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Paul Carini ◽  
Manuel Delgado-Baquerizo ◽  
Eve-Lyn S. Hinckley ◽  
Hannah Holland‐Moritz ◽  
Tess E. Brewer ◽  
...  

ABSTRACT Few studies have comprehensively investigated the temporal variability in soil microbial communities despite widespread recognition that the belowground environment is dynamic. In part, this stems from the challenges associated with the high degree of spatial heterogeneity in soil microbial communities and because the presence of relic DNA (DNA from dead cells or secreted extracellular DNA) may dampen temporal signals. Here, we disentangle the relationships among spatial, temporal, and relic DNA effects on prokaryotic and fungal communities in soils collected from contrasting hillslopes in Colorado, USA. We intensively sampled plots on each hillslope over 6 months to discriminate between temporal variability, intraplot spatial heterogeneity, and relic DNA effects on the soil prokaryotic and fungal communities. We show that the intraplot spatial variability in microbial community composition was strong and independent of relic DNA effects and that these spatial patterns persisted throughout the study. When controlling for intraplot spatial variability, we identified significant temporal variability in both plots over the 6-month study. These microbial communities were more dissimilar over time after relic DNA was removed, suggesting that relic DNA hinders the detection of important temporal dynamics in belowground microbial communities. We identified microbial taxa that exhibited shared temporal responses and show that these responses were often predictable from temporal changes in soil conditions. Our findings highlight approaches that can be used to better characterize temporal shifts in soil microbial communities, information that is critical for predicting the environmental preferences of individual soil microbial taxa and identifying linkages between soil microbial community composition and belowground processes. IMPORTANCE Nearly all microbial communities are dynamic in time. Understanding how temporal dynamics in microbial community structure affect soil biogeochemistry and fertility are key to being able to predict the responses of the soil microbiome to environmental perturbations. Here, we explain the effects of soil spatial structure and relic DNA on the determination of microbial community fluctuations over time. We found that intensive spatial sampling was required to identify temporal effects in microbial communities because of the high degree of spatial heterogeneity in soil and that DNA from nonliving sources masks important temporal patterns. We identified groups of microbes with shared temporal responses and show that these patterns were predictable from changes in soil characteristics. These results provide insight into the environmental preferences and temporal relationships between individual microbial taxa and highlight the importance of considering relic DNA when trying to detect temporal dynamics in belowground communities.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 880
Author(s):  
Montserrat Jurado-Expósito ◽  
Francisca López-Granados ◽  
Francisco Manuel Jiménez-Brenes ◽  
Jorge Torres-Sánchez

Assessing the spatial distribution of weeds within a field is a key step to the success of site-specific weed management strategies. Centaurea diluta (knapweed) is an emerging weed that is causing a major agronomic problem in southern and central Spain because of its large size, the difficulty of controlling it, and its high competitive ability. The main objectives of this study were to examine the spatial variability of C. diluta density in two wheat fields by multivariate geostatistical methods using unmanned aerial vehicle (UAV) imagery as secondary information and to delineate potential control zones for site-specific treatments based on occurrence probability maps of weed infestation. The primary variable was obtained by grid weed density field samplings, and the secondary variables were derived from UAV imagery acquired the same day as the weed field surveys. Kriging and cokriging with UAV-derived variables that displayed a strong correlation with weed density were used to compare C. diluta density mapping performance. The accuracy of the predictions was assessed by cross-validation. Cokriging with UAV-derived secondary variables generated more accurate weed density maps with a lower RMSE compare with kriging and cokriging with RVI, NDVI, ExR, and ExR(2) (the best methods for the prediction of knapweed density). Cokriged estimates were used to generate probability maps for risk assessment when implementing site-specific weed control by indicator kriging. This multivariate geostatistical approach enabled the delineation of winter wheat fields into two zones for different prescription treatments according to the C. diluta density and the economic threshold.


2020 ◽  
Author(s):  
Jesús Carrera

<p>I review early developments of the stochastic modeling approach. It is generally believed that it is an American contribution. Indeed, North-Americans (notably Lynn Gelhar and Allan Freeze, but also Eduardo Alonso) pointed to the importance of spatial variability of hydraulic conductivity in controlling large scale water flow and solute transport in the mid 1970’s (Matheron’s much earlier 1967 solution did not become broadly known until much later). However, the formulation of an approach to solve the problem was the result of work by French mining engineers at Fontainebleau. They had developed the field of Geostatistics, initially for the assessment of mineral reserves. It was natural to apply these concepts to groundwater. It was Ghislain de Marsily who framed the basic concepts of the geostatistical approach to address spatial variability, which remains essentially unchanged to this day.</p>


2020 ◽  
Vol 117 (13) ◽  
pp. 7263-7270 ◽  
Author(s):  
Kelly Gravuer ◽  
Anu Eskelinen ◽  
Joy B. Winbourne ◽  
Susan P. Harrison

Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities.


2019 ◽  
Vol 39 (4) ◽  
pp. 328-333
Author(s):  
Negar Moghimian ◽  
Seyed Mohsen Hosseini ◽  
Yahya Kooch ◽  
Behrouz Zarei Darki

Sign in / Sign up

Export Citation Format

Share Document