Effects of 3-aminobenzamide on poly (ADP-ribose) polymerase expression, apoptosis and cell cycle progression of HeLa cells after X-ray irradiation

2008 ◽  
Vol 2 (2) ◽  
pp. 204-206
Author(s):  
Xiang Du ◽  
Hongguang Zhao ◽  
Wen Wang ◽  
Wei Guo ◽  
Shouliang Gong
Author(s):  
S. Marais ◽  
T.V. Mqoco ◽  
B.A. Stander ◽  
R. Prudent ◽  
L. Lafanechère ◽  
...  

It can be concluded that compound-X induced both autophagy and apoptosis as a means of celldeath in HeLa cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4326-4326
Author(s):  
Jianping Lan ◽  
He Huang ◽  
Yuanyuan Zhu ◽  
Jie Sun

Abstract Telomere is a nucleoprotein complex which caps the extreme ends of eukaryotic chromosomes. In human, telomere is composed of a tandem repeat array of TTAGGG hexanucleotide and bound to a set of specific proteins. These proteins function to maintain the integrity of chromosomes and genomic stability. Among these proteins, telomere repeat binding factor 1(TRF1) is the first telomere binding protein which was isolated by DNA affinity chromatography in 1995. TRF1 serves as a negative regulator of telomere length since TRF1 overexpression would elicit the shortening of telomere length in telomerase-positive cells. Meanwhile, overexpression of TRF1 would also induce the entry into mitosis and increase mitotic cells. These observation indicated TRF1 might participate in cell cycle regulation. However, the underlying mechanism in which TRF1 regulates the cell cycle and the endogenous level of TRF1 were not well-documented during cell cycle progression. To address these questions, we arrested HeLa cells at different phases by a combination of thymidine(5mM at final concentration) and nocodazole(20mM at final concentration) and detected the TRF1 levels by semi-quantitive Western Blotting assay. Cell cycle was verified by flow cytometry. Our results showed TRF1 level fluctuated coincided with cell cycle progression which reached the zenith at the M phase and went down to the nadir at G1/S point. Densitometry analysis demonstrated that the level of TRF1 at M phase was 3.9 times more than that at G1/S point(n=3, p<0.01). These results suggested that TRF1 might be essential for proper cell cycle progression and it was likely to take part in regulation of cell cycle chechpoint. TRF1 is also expressed in telomerase-negative cells. To further discriminate the different functions of TRF1 and decipher its protein-protein interaction network in telomerase-positive and negative cells, full-length TRF1 cDNA was amplified by PCR and subsequently subcloned into pEGFP-C2 vector to express TRF1 tagged by enhanced green fluorescent protein. This construct was then transiently transfected into telomerase-negative cells(WI38-2RA) and telomerase-positive cells(HeLa). Immunoflourescent staining was employed to check the localization of TRF1 in these two kinds of cells. Although in both cells, TRF1 was distributed in a speckled pattern in the nuclei, TRF1 did exclusively colocalize with promyelocytic leukemia(PML) nuclear body in WI38-2RA cells but not in HeLa cells. PML fused with RARα due to chromosome15,17 translocation which led to disassembly of PML nucleur body in acute promyelocytic leukemia. These preliminary results suggested that TRF1 might have the different regulating mechanism and interacting network.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4252-4252
Author(s):  
He Huang ◽  
Jingyuan Li ◽  
Jianping Lan ◽  
Yanmin Zhao ◽  
Xiaoyu Lai

Abstract Objective: Human bone marrow-derived mesenchymal stem cells(MSCs) are thought to be promising tools in cell and gene therapy. Unfortunately, the low frequency of MSCs in bone marrow and rapid aging in in vitro expansion, which profoundly compromise their proliferative capacity, give rise to a huge hindrance for their clinical use. Previous study indicated that MSCs would undergo quick telomere shortening as well as reduced replicative capacity during in vitro expansion. These findings suggested that MSCs’ telomere loss might be associated with their decreased proliferative and differentiative potentials. However, the mechanisms by which MSCs maintain their telomere homeostasis have not yet been fully addressed to date. In the present study, we compared the telomere length, the distribution pattern of telomeric repeat binding factor 1(TRF1) between MSCs and other telomerase-positive cells or telomerase-negative cells, detected extrachromosomal telomeric repeat DNA (ECTR DNA) in MSCs and the variation of telomerase activity during cell cycle progression in order to unveil the mystery of telomere regulation in MSCs. METHODS: MSCs were isolated from healthy human bone marrow (n=34) by the plastic adherence protocols and identified by flow cytometry with markers of CD14, CD45, CD44, HLA-DR, CD34, CD29 and CD166. Telomere length and ECTR DNA were detected with Southern hybridization. The TRF1 distribution were probed with immunofluorescence staining. Telomeric repeat amplification protocol (TRAP ) and/or semi-quantitive Western blot assay were performed to determine the telomerase activity in MSCs, MSCs-derived adipocytes and telomerase levels during cell cycle progression. MSCs were synchronized by serum starvation and Aphidicolin treatment for the aforementioned assay. RESULTS: The mean telomere restriction fragment (mTRF) in MSCs was 8.0 kbp( range, 2.7 kbp-18.0 kbp), similar to telomerase-positive HeLa cells 6.0 kbp (range, 2.7 kbp-8.6 kbp) and 293T cells 5.0 kbp(range, 2.7 kbp-8.6 kbp); while the mTRF in telomerase-negative cells WI-38–2RA was 21.2 kb (range 2.0 kbp->21.2 kbp). The results indicated that telomere length in MSCs and HeLa cells were shorter and relatively more homogeneous than WI-38–2RA cells. TRF1 did not coincide with promyelocytic leukemia (PML) nuclear body in MSCs and HeLa cells while it exclusively did in WI-38–2RA cells. ECTR DNA was negative in MSCs and HeLa cells but positive in WI-38–2RA cells. Detected by TRAP, telomerase activity in MSCs(n=34) was negative with relative telomerase activity (RTA) of 1.44%±0.77%, but it was positive in MSCs-derived adipocytes (n=3) with RTA of 11.80±2.52%(P<0.001). Moreover, a cell cycle-dependent expression profile of telomerase was found in MSCs when they were synchronized by serum starvation and Aphidicolin treatment. Untreated MSCs expressed extremely low level of telomerase probed by Western blot with the 2C4 mAb, but the telomerase level had significantly increased when these cells were trapped in S phase. CONCLUSION: Since MSCs possessed similar features to telomerase-positive cells in telomere length, TRF1 localization pattern and ECTR DNA which were distinct from telomerase-negative ALT cells, and they had increased telomerase activity following differentiation into adipocytes and entrance into S phase, We postulated that the telomere in MSCs was maintained by telomerase pathway other than ALT pathway. The telomerase expression level of MSCs was tightly regulated with cell cycle progression.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Linda Nötzold ◽  
Lukas Frank ◽  
Minakshi Gandhi ◽  
Maria Polycarpou-Schwarz ◽  
Matthias Groß ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Niels Belmans ◽  
Liese Gilles ◽  
Jonas Welkenhuysen ◽  
Randy Vermeesen ◽  
Bjorn Baselet ◽  
...  

Stem cells contained within the dental mesenchymal stromal cell (MSC) population are crucial for tissue homeostasis. Assuring their genomic stability is therefore essential. Exposure of stem cells to ionizing radiation (IR) is potentially detrimental for normal tissue homeostasis. Although it has been established that exposure to high doses of ionizing radiation (IR) has severe adverse effects on MSCs, knowledge about the impact of low doses of IR is lacking. Here we investigated the effect of low doses of X-irradiation with medical imaging beam settings (<0.1 Gray; 900 mGray per hour), in vitro, on pediatric dental mesenchymal stromal cells containing dental pulp stem cells from deciduous teeth, dental follicle progenitor cells and stem cells from the apical papilla. DNA double strand break (DSB) formation and repair kinetics were monitored by immunocytochemistry of γH2AX and 53BP1 as well as cell cycle progression by flow cytometry and cellular senescence by senescence-associated β-galactosidase assay and ELISA. Increased DNA DSB repair foci, after exposure to low doses of X-rays, were measured as early as 30 min post-irradiation. The number of DSBs returned to baseline levels 24 h after irradiation. Cell cycle analysis revealed marginal effects of IR on cell cycle progression, although a slight G2/M phase arrest was seen in dental pulp stromal cells from deciduous teeth 72 h after irradiation. Despite this cell cycle arrest, no radiation-induced senescence was observed. In conclusion, low X-ray IR doses (< 0.1 Gray; 900 mGray per hour), were able to induce significant increases in the number of DNA DSBs repair foci, but cell cycle progression seems to be minimally affected. This highlights the need for more detailed and extensive studies on the effects of exposure to low IR doses on different mesenchymal stromal cells.


1993 ◽  
Vol 53 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Hisao Yamaguchi ◽  
Keiko Hosokawa ◽  
Zheng-Lin Jiang ◽  
Akira Takahashi ◽  
Toshitaka Ikehara ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Chunying Cui ◽  
Yuji Wang ◽  
Yaonan Wang ◽  
Ming Zhao ◽  
Shiqi Peng

Alsterpaullone, a small molecule cyclin-dependent kinase (CDK) inhibitor, regulates the cell cycle progression. Beyond death-inducing properties, we identified the effect of alsterpaullone on cycle procedure and apoptosis of HeLa cell. It was found that alsterpaullone inhibited HeLa cells in a time-dependent (0–72 h) and dose-dependent (0–30 μM) manner. In the presence of alsterpaullone, HeLa cells were arrested in G2/M prior to undergoing apoptosis via a mechanism that is involved in the regulation of various antiapoptotic genes, DNA-repair, transcription, and cell cycle progression. Compared to controls, alsterpaullone effectively prevented HeLa cells from entering S-phase. These potential therapeutic efficacies could be correlated with the activation of caspase-3.


Sign in / Sign up

Export Citation Format

Share Document