Fungal strain selection for protease production by solid-state fermentation using agro-industrial waste as substrates

2019 ◽  
Vol 73 (10) ◽  
pp. 2603-2610 ◽  
Author(s):  
M. A. Lizardi-Jiménez ◽  
J. Ricardo-Díaz ◽  
T. A. Quiñones-Muñoz ◽  
F. Hernández-Rosas ◽  
R. Hernández-Martínez
2008 ◽  
Vol 83 (7) ◽  
pp. 1012-1018 ◽  
Author(s):  
Jarun Chutmanop ◽  
Sinsupha Chuichulcherm ◽  
Yusuf Chisti ◽  
Penjit Srinophakun

2021 ◽  
Vol 16 (7) ◽  
pp. 64-70
Author(s):  
Priya Chaudhary ◽  
Arun Kumar Sharma ◽  
Pracheta Janmeda

Enhancement in the production of enzyme by utilizing different strains of microbe is one of the main prospects in biotechnology. In the present work, ethyl methane sulfonate (EMF) was selected as the chemical mutagen for inducing mutagenesis in fungi. It is a cheap method to induce random mutation as compared to other methods of recombinant technologies. Strain improvement was done by incubating the fungal spore suspension at variable concentrations of EMS i.e. 4% (v/v) and 10% (v/v) for the time period of 60, 90, and 120 min respectively. The set of control was treated with distilled water only. The fungal colonies were found to be maximum in control plate as compared to the EMF exposed plates. The number of fungal colonies was reduced as we raised the exposure time of EMF. Specific activity and the lipase activity of wild strain and hyperproducer were evaluated under the submerged (SmF) and solid-state fermentation (SSF). The wild strain denoted the 3.2 U/ml/min of enzymatic activity under SmF and 15.87 U/g/min of activity under SSF. In contrast, the best enzymatic activity was represented by S2St1 at 10% of EMS after the time period of 60 min i.e. 11.7 U/ml/min under SmF and 99.35 U/g/min under SSF after the time period of 72 hrs. Statistical analysis by using one-way ANOVA determined that the value of F calculated was lower than the F tabulated. So, there was a significant relation between the EMS percentage and time of exposure among the mutated strains. In conclusion, this soil fungal strain can be utilized to produce lipase enzyme for numerous industrial applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ponnuswamy Vijayaraghavan ◽  
Sreekumar Saranya ◽  
Samuel Gnana Prakash Vincent

Cow dung and agroresidues were used as the substrates for the production of alkaline proteases by Pseudomonas putida strain AT in solid-state fermentation. Among the various substrates evaluated, cow dung supported maximum (1351±217 U/g) protease production. The optimum conditions for the production of alkaline proteases were a fermentation period of 48 h, 120% (v/w) moisture, pH 9, and the addition of 6% (v/w) inoculum, 1.5% (w/w) trehalose, and 2.0% (w/w) yeast extract to the cow dung substrate. The enzyme was active over a range of temperatures (50–70°C) and pHs (8–10), with maximum activity at 60°C and pH 9. These enzymes showed stability towards surfactants, detergents, and solvent and digested various natural proteins.


2016 ◽  
Vol 182 (2) ◽  
pp. 511-528 ◽  
Author(s):  
R. Renganath Rao ◽  
M. Vimudha ◽  
N. R. Kamini ◽  
M. K. Gowthaman ◽  
B. Chandrasekran ◽  
...  

2020 ◽  
Vol 2 (4) ◽  
pp. 13-23
Author(s):  
Nabiha Naeem Sheikhs ◽  
Qurat-ul-ain ◽  
Saba Altaf

Proteases (also known as peptidases or proteinases) are hydrolytic enzymes that cleave proteins into amino acids. They comprise 60% of the total industrial usage of enzymes worldwide and can be obtained from many sources. The current study aims to isolate and screen protease-producing bacterial strains from the soil and to produce protease from the bacterial co-cultures using solid-state fermentation (SSF). Primary screening of the protease-producing bacterial strains was carried out on skim milk agar and they were sub-cultured and preserved on the nutrient agar for further testing. Thirty-two compatibility tests of twenty-seven bacterial isolates were performed and SSF was carried out. Afterward, absorbance was taken at 660 nm against tyrosine as standard. According to the results, the bacterial co-culture 19 showed the highest absorbance with an enzyme activity of 10.2 U/ml. The bacterial strains of the co-culture 19 were identified through morphological and biochemical tests. Bacterial strain 1 was observed as cocci and irregular, while bacterial strain 2 was bacillus and rod-shaped. Both strains were positive for gram staining, catalase test, casein hydrolysis test and methyl red test. As for endospore staining, bacterial strain 1 was spore forming while bacterial strain 2 was a non-spore former. It was concluded that the bacterial co-culture 19 can act as a potent co-culture for protease production. Compatibility test was carried out to enhance the production of protease by utilizing cheap and readily available agro-waste products, which benefit the industry by being cost effective and the environment by being eco-friendly.


2021 ◽  
Vol 93 (suppl 3) ◽  
Author(s):  
FELYPE T.B. ROCHA ◽  
ROMERO M.P. BRANDÃO-COSTA ◽  
ANNA GABRIELLY D. NEVES ◽  
KETHYLEN B.B. CARDOSO ◽  
THIAGO P. NASCIMENTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document