Antioxidative responses and proline level in leaves and roots of pea plants subjected to nickel stress

2005 ◽  
Vol 27 (3) ◽  
pp. 329-340 ◽  
Author(s):  
Ewa Gajewska ◽  
Maria Skłodowska
Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
I Tahirovic ◽  
Z Rimpapa ◽  
S Cavar ◽  
S Huseinovic ◽  
S Muradic ◽  
...  

2010 ◽  
Vol 22 (3) ◽  
pp. 473-480 ◽  
Author(s):  
N. W. Ali ◽  
S. Abouzid ◽  
A. Nasib ◽  
S. Khan ◽  
J. Qureshi ◽  
...  

Agrologia ◽  
2018 ◽  
Vol 4 (2) ◽  
Author(s):  
Stela Wusono ◽  
John M Matinahoru ◽  
CMA Watimena

Swietenia mahagoni is a timber forestry plants have allelopathy toxic, can interfere with the growth of surrounding plants. This study aimed to determine the effects of extracts from various parts of Swietenia mahagoni on seed germination of green beans and corn. This research was conducted at the Laboratory of Silviculture, an extract from a litter, fresh leaves, bark and roots of the Swietenia mahagoni plant and given to the seed germination green beans and corn. The results showed that the extract of fresh leaves and roots Swietenia mahagoni inhibit seed germination green beans and corn, while the provision of litter no effect. Green bean seed has a higher durability of the maize seed to allelopathy of root Swietenia mahagoni.


2018 ◽  
Vol 44 (3) ◽  
pp. 463 ◽  
Author(s):  
Zhang PENG ◽  
Hua-Rong TONG ◽  
Guo-Lu LIANG ◽  
Yi-Qi SHI ◽  
Lian-Yu YUAN

Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 165
Author(s):  
Chanel J. Pretorius ◽  
Fidele Tugizimana ◽  
Paul A. Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery

The first step in crop introduction—or breeding programmes—requires cultivar identification and characterisation. Rapid identification methods would therefore greatly improve registration, breeding, seed, trade and inspection processes. Metabolomics has proven to be indispensable in interrogating cellular biochemistry and phenotyping. Furthermore, metabolic fingerprints are chemical maps that can provide detailed insights into the molecular composition of a biological system under consideration. Here, metabolomics was applied to unravel differential metabolic profiles of various oat (Avena sativa) cultivars (Magnifico, Dunnart, Pallinup, Overberg and SWK001) and to identify signatory biomarkers for cultivar identification. The respective cultivars were grown under controlled conditions up to the 3-week maturity stage, and leaves and roots were harvested for each cultivar. Metabolites were extracted using 80% methanol, and extracts were analysed on an ultra-high performance liquid chromatography (UHPLC) system coupled to a quadrupole time-of-flight (qTOF) high-definition mass spectrometer analytical platform. The generated data were processed and analysed using multivariate statistical methods. Principal component analysis (PCA) models were computed for both leaf and root data, with PCA score plots indicating cultivar-related clustering of the samples and pointing to underlying differential metabolic profiles of these cultivars. Further multivariate analyses were performed to profile differential signatory markers, which included carboxylic acids, amino acids, fatty acids, phenolic compounds (hydroxycinnamic and hydroxybenzoic acids, and associated derivatives) and flavonoids, among the respective cultivars. Based on the key signatory metabolic markers, the cultivars were successfully distinguished from one another in profiles derived from both leaves and roots. The study demonstrates that metabolomics can be used as a rapid phenotyping tool for cultivar differentiation.


2020 ◽  
Author(s):  
George Ooko Abong' ◽  
Tawanda Muzhingi ◽  
Michael Wandayi Okoth ◽  
Fredrick Ng'ang'a ◽  
Phillis Emelda Ochieng ◽  
...  

Fitoterapia ◽  
2021 ◽  
pp. 104974
Author(s):  
Vedaste Kagisha ◽  
Roland Marini Djang'eing'a ◽  
Raymond Muganga ◽  
Olivier Bonnet ◽  
Alembert Tiabou Tchinda ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 655
Author(s):  
Hongmei Du ◽  
Shah Zaman ◽  
Shuiqingqing Hu ◽  
Shengquan Che

This study aimed to obtain the full-length transcriptome of purslane (Portulaca oleracea); assorted plant samples were used for single-molecule real-time (SMRT) sequencing. Based on SMRT, functional annotation of transcripts, transcript factors (TFs) analysis, simple sequence repeat analysis and long non-coding RNAs (LncRNAs) prediction were accomplished. Total 15.33-GB reads were produced; with 9,350,222 subreads and the average length of subreads, 1640 bp was counted. With 99.99% accuracy, after clustering, 132,536 transcripts and 78,559 genes were detected. All unique SMART transcripts were annotated in seven functional databases. 4180 TFs (including transcript regulators) and 7289 LncRNAs were predicted. The results of RNA-seq were confirmed with qRT–PCR analysis. Illumina sequencing of leaves and roots of two purslane genotypes was carried out. Amounts of differential expression genes and related KEGG pathways were found. The expression profiles of related genes in the biosynthesis of unsaturated fatty acids pathway in leaves and roots of two genotypes of purslane were analyzed. Differential expression of genes in this pathway built the foundation of ω-3 fatty acid accumulation in different organs and genotypes of purslane. The aforementioned results provide sequence information and may be a valuable resource for whole-genome sequencing of purslane in the future.


2009 ◽  
Vol 31 (4) ◽  
pp. 839-848 ◽  
Author(s):  
Yuping Wang ◽  
Wenliang He ◽  
Huiying Huang ◽  
Lizhe An ◽  
Di Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document