scholarly journals A simple and effective algorithm for the maximum happy vertices problem

Top ◽  
2021 ◽  
Author(s):  
Marco Ghirardi ◽  
Fabio Salassa

AbstractIn a recent paper, a solution approach to the Maximum Happy Vertices Problem has been proposed. The approach is based on a constructive heuristic improved by a matheuristic local search phase. We propose a new procedure able to outperform the previous solution algorithm both in terms of solution quality and computational time. Our approach is based on simple ingredients implying as starting solution generator an approximation algorithm and as an improving phase a new matheuristic local search. The procedure is then extended to a multi-start configuration, able to further improve the solution quality at the cost of an acceptable increase in computational time.

2017 ◽  
Vol 117 (10) ◽  
pp. 2142-2170 ◽  
Author(s):  
Abdelrahman E.E. Eltoukhy ◽  
Felix T.S. Chan ◽  
S.H. Chung ◽  
Ben Niu ◽  
X.P. Wang

Purpose The purpose of this paper is twofold. First, to propose an operational model for aircraft maintenance routing problem (AMRP) rather than tactical models that are commonly used in the literature. Second, to develop a fast and responsive solution method in order to cope with the frequent changes experienced in the airline industry. Design/methodology/approach Two important operational considerations were considered, simultaneously. First one is the maximum flying hours, and second one is the man-power availability. On the other hand, ant colony optimization (ACO), simulated annealing (SA), and genetic algorithm (GA) approaches were proposed to solve the model, and the upper bound was calculated to be the criteria to assess the performance of each meta-heuristic. After attempting to solve the model by these meta-heuristics, the authors noticed further improvement chances in terms of solution quality and computational time. Therefore, a new solution algorithm was proposed, and its performance was validated based on 12 real data from the EgyptAir carrier. Also, the model and experiments were extended to test the effect of the operational considerations on the profit. Findings The computational results showed that the proposed solution algorithm outperforms other meta-heuristics in finding a better solution in much less time, whereas the operational considerations improve the profitability of the existing model. Research limitations/implications The authors focused on some operational considerations rather than tactical considerations that are commonly used in the literature. One advantage of this is that it improves the profitability of the existing models. On the other hand, identifying future research opportunities should help academic researchers to develop new models and improve the performance of the existing models. Practical implications The experiment results showed that the proposed model and solution methods are scalable and can thus be adopted by the airline industry at large. Originality/value In the literature, AMRP models were cast with approximated assumption regarding the maintenance issue, while neglecting the man-power availability consideration. However, in this paper, the authors attempted to relax that maintenance assumption, and consider the man-power availability constraints. Since the result showed that these considerations improve the profitability by 5.63 percent in the largest case. The proposed operational considerations are hence significant. Also, the authors utilized ACO, SA, and GA to solve the model for the first time, and developed a new solution algorithm. The value and significance of the new algorithm appeared as follow. First, the solution quality was improved since the average improvement ratio over ACO, SA, and GA goes up to 8.30, 4.45, and 4.00 percent, respectively. Second, the computational time was significantly improved since it does not go beyond 3 seconds in all the 12 real cases, which is considered much lesser compared to ACO, SA, and GA.


Author(s):  
RASHIKA GUPTA ◽  
MANJU AGARWAL

The paper presents a heuristic for series-parallel system, exhibiting multi-state behavior, with the objective to minimize the cost in order to provide a desired level of reliability. System reliability is defined as the ability to satisfy consumers demand and is presented as a piecewise cumulative load curve. The components are binary and chosen from the list of products available in the market, and are being characterized by their feeding capacity, reliability and cost. The solution approach makes use of heterogeneous collection of components to provide redundancy in a subsystem. The algorithm has been applied to power systems from the literature for various levels of reliability requirement. The heuristic offers a straightforward analysis and efficiency over genetic algorithm (GA) existing in the literature. Keeping in view the computational efficiency and the observed solution quality the proposed heuristic is appealing. As such, the heuristic developed is attractive and can be easily and efficiently applied to numerous real life systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hongtao Hu ◽  
Yiwei Wu ◽  
Tingsong Wang

The steelmaking and continuous-casting (SCC) process in integrated iron and steel enterprises can be described as two stages: the upstream stage and downstream stage. Raw materials are transformed into molten steel in the upstream stage, while the downstream stage is responsible for transforming molten steel which is released at regular intervals and has a limited time for being turned into slabs. This article focuses on the task assignment problem in the downstream stage within the given information resulting from the upstream stage. This problem is formulated as a nonlinear mixed-integer programming model aimed at minimizing total tardiness within the resource constraints and time windows constraints for the tasks. An improved solution algorithm based on particle swam optimization is developed to efficiently solve the proposed model. Finally, computational experiments are implemented to evaluate the performance of the solution algorithm in terms of solution quality and computational time.


Author(s):  
Taner Cokyasar ◽  
Felipe de Souza ◽  
Joshua Auld ◽  
Omer Verbas

Efficient dynamic ride-matching (DRM) in large-scale transportation systems is a key driver in transport simulations to yield answers to challenging problems. Although the DRM problem is simple to solve, it quickly becomes a computationally challenging problem in large-scale transportation system simulations. Therefore, this study thoroughly examines the DRM problem dynamics and proposes an optimization-based solution framework to solve the problem efficiently. To benefit from parallel computing and reduce computational times, the problem’s network is divided into clusters utilizing a commonly used unsupervised machine learning algorithm along with a linear programming model. Then, these sub-problems are solved using another linear program to finalize the ride-matching. At the clustering level, the framework allows users adjusting cluster sizes to balance the trade-off between the computational time savings and the solution quality deviation. A case study in the Chicago Metropolitan Area, U.S., illustrates that the framework can reduce the average computational time by 58% at the cost of increasing the average pick up time by 26% compared with a system optimum, that is, non-clustered, approach. Another case study in a relatively small city, Bloomington, Illinois, U.S., shows that the framework provides quite similar results to the system-optimum approach in approximately 62% less computational time.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1622
Author(s):  
Wipawee Tepnatim ◽  
Witchuda Daud ◽  
Pitiya Kamonpatana

The microwave oven has become a standard appliance to reheat or cook meals in households and convenience stores. However, the main problem of microwave heating is the non-uniform temperature distribution, which may affect food quality and health safety. A three-dimensional mathematical model was developed to simulate the temperature distribution of four ready-to-eat sausages in a plastic package in a stationary versus a rotating microwave oven, and the model was validated experimentally. COMSOL software was applied to predict sausage temperatures at different orientations for the stationary microwave model, whereas COMSOL and COMSOL in combination with MATLAB software were used for a rotating microwave model. A sausage orientation at 135° with the waveguide was similar to that using the rotating microwave model regarding uniform thermal and electric field distributions. Both rotating models provided good agreement between the predicted and actual values and had greater precision than the stationary model. In addition, the computational time using COMSOL in combination with MATLAB was reduced by 60% compared to COMSOL alone. Consequently, the models could assist food producers and associations in designing packaging materials to prevent leakage of the packaging compound, developing new products and applications to improve product heating uniformity, and reducing the cost and time of the research and development stage.


Author(s):  
Siyao Luan ◽  
Deborah L. Thurston ◽  
Madhav Arora ◽  
James T. Allison

In some cases, the level of effort required to formulate and solve an engineering design problem as a mathematical optimization problem is significant, and the potential improved design performance may not be worth the excessive effort. In this article we address the tradeoffs associated with formulation and modeling effort. Here we define three core elements (dimensions) of design formulations: design representation, comparison metrics, and predictive model. Each formulation dimension offers opportunities for the design engineer to balance the expected quality of the solution with the level of effort and time required to reach that solution. This paper demonstrates how using guidelines can be used to help create alternative formulations for the same underlying design problem, and then how the resulting solutions can be evaluated and compared. Using a vibration absorber design example, the guidelines are enumerated, explained, and used to compose six alternative optimization formulations, featuring different objective functions, decision variables, and constraints. The six alternative optimization formulations are subsequently solved, and their scores reflecting their complexity, computational time, and solution quality are quantified and compared. The results illustrate the unavoidable tradeoffs among these three attributes. The best formulation depends on the set of tradeoffs that are best in that situation.


1998 ◽  
Vol 2 (1) ◽  
pp. 65-104 ◽  
Author(s):  
V. Adlakha ◽  
H. Arsham

In a fast changing global market, a manager is concerned with cost uncertainties of the cost matrix in transportation problems (TP) and assignment problems (AP).A time lag between the development and application of the model could cause cost parameters to assume different values when an optimal assignment is implemented. The manager might wish to determine the responsiveness of the current optimal solution to such uncertainties. A desirable tool is to construct a perturbation set (PS) of cost coeffcients which ensures the stability of an optimal solution under such uncertainties.The widely-used methods of solving the TP and AP are the stepping-stone (SS) method and the Hungarian method, respectively. Both methods fail to provide direct information to construct the needed PS. An added difficulty is that these problems might be highly pivotal degenerate. Therefore, the sensitivity results obtained via the available linear programming (LP) software might be misleading.We propose a unified pivotal solution algorithm for both TP and AP. The algorithm is free of pivotal degeneracy, which may cause cycling, and does not require any extra variables such as slack, surplus, or artificial variables used in dual and primal simplex. The algorithm permits higher-order assignment problems and side-constraints. Computational results comparing the proposed algorithm to the closely-related pivotal solution algorithm, the simplex, via the widely-used pack-age Lindo, are provided. The proposed algorithm has the advantage of being computationally practical, being easy to understand, and providing useful information for managers. The results empower the manager to assess and monitor various types of cost uncertainties encountered in real-life situations. Some illustrative numerical examples are also presented.


2015 ◽  
Vol 2 (2) ◽  
pp. 57-61
Author(s):  
Petr Váňa ◽  
Jan Faigl

In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper.


2020 ◽  
Vol 18 (4) ◽  
pp. 505-509
Author(s):  
Chiu Peter ◽  
Peng-Cheng Sung ◽  
Victoria Chiu

In a recent study, a manufacturing batch-size and end-product shipment problem with outsourcing, multi-shipment, and rework was investigated using mathematical modeling and derivatives in its solution procedure. This study demonstrates that a simplified two-phase algebraic approach can also solve the problem and decide the cost-minimization policies for batch-size and end-product shipments. Our proposed straightforward solution approach enables the practitioners in the production planning and controlling filed to comprehend and efficiently solve the best replenishing batch-size and shipment policies of this real problem.


2021 ◽  
Vol 70 ◽  
pp. 77-117
Author(s):  
Allegra De Filippo ◽  
Michele Lombardi ◽  
Michela Milano

This paper considers multi-stage optimization problems under uncertainty that involve distinct offline and online phases. In particular it addresses the issue of integrating these phases to show how the two are often interrelated in real-world applications. Our methods are applicable under two (fairly general) conditions: 1) the uncertainty is exogenous; 2) it is possible to define a greedy heuristic for the online phase that can be modeled as a parametric convex optimization problem. We start with a baseline composed by a two-stage offline approach paired with the online greedy heuristic. We then propose multiple methods to tighten the offline/online integration, leading to significant quality improvements, at the cost of an increased computation effort either in the offline or the online phase. Overall, our methods provide multiple options to balance the solution quality/time trade-off, suiting a variety of practical application scenarios. To test our methods, we ground our approaches on two real cases studies with both offline and online decisions: an energy management problem with uncertain renewable generation and demand, and a vehicle routing problem with uncertain travel times. The application domains feature respectively continuous and discrete decisions. An extensive analysis of the experimental results shows that indeed offline/online integration may lead to substantial benefits.


Sign in / Sign up

Export Citation Format

Share Document