Microstructural evolution and mechanical properties of an ultrahigh-strength Al-Zn-Mg-Cu alloy via powder metallurgy and hot extrusion

Author(s):  
Cun-guang Chen ◽  
Wei-hao Han ◽  
Miao Qi ◽  
Shi-peng Dong ◽  
Pei Li ◽  
...  
2010 ◽  
Vol 146-147 ◽  
pp. 734-737
Author(s):  
Hui Yu ◽  
Hua Shun Yu ◽  
Zhen Ya Zhang ◽  
Guang Hui Min ◽  
Cheng Chen

In this study, AZ91 and SiC particulates reinforced AZ91 (SiCp/AZ91) magnesium alloys were successfully fabricated using rapid solidification/powder metallurgy technique followed by hot extrusion. Microstructural evolution and mechanical properties of the monolithic AZ91 and SiCp/AZ91 magnesium alloys were evaluated. SiC particulates were well distributed with only few agglomerated particles. The porosity level and microhardness increased as SiCp content increased because the increased surface area of SiCp, harder ceramic phases and SiCp acted obstacles to the motion of dislocations. In addition, an increase in particulate reinforcement content was observed to decrease mechanical properties of the composite compared with the unreinforced counterpart due to increasing agglomerating regions and porosity, brittle interface debonding between matrix and SiCp.


2021 ◽  
Vol 853 ◽  
pp. 156768 ◽  
Author(s):  
Shima Ehtemam-Haghighi ◽  
Hooyar Attar ◽  
Ilya V. Okulov ◽  
Matthew S. Dargusch ◽  
Damon Kent

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn + 0.2 GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn + 0.2 GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


2007 ◽  
Vol 546-549 ◽  
pp. 871-876
Author(s):  
Zhen Liang Li ◽  
Jian Xin Xie ◽  
Wei Chen ◽  
Jing Zhai ◽  
Hui Ping Ren ◽  
...  

Six kinds of Al-Zn-Mg-Cu alloys, modified with nickel and zirconium, have been produced by rapid solidification using spray deposition(the Osprey process). The effect of nickel on the structures, mechanical properties of ultrahigh strength aluminium alloy is studied, and the probable maximum of mechanical properties is predicted. There are three nickel-rich phases, Al3Ni2, Al7Cu4Ni and MgNi2, forming in 1%Ni alloy, its ultimate tensile strength(UTS) increased with increasing extrusion ratios significantly while maintaining high levels of ductility, Futhermore, the extruded bars show enhancing more clearly than extruded plates in UTS and ductility. The content of Ni should decreased with increasing of Zn and Zr, and the highest properties(UTS=832MPa, Elongation=7.5%)are attained in 0.20Zr+0.30Ni (wt%)alloy. In addition, the size, the shape and the homogeneous distribution of zirconium-rich phase produced in solidification is the key to effecting the mechanical properties of materials when Zr content is 0.2~0.5%.


1988 ◽  
Vol 98 ◽  
pp. 419-423 ◽  
Author(s):  
J. Liu ◽  
U. Backmark ◽  
L. Arnberg ◽  
N. Bäckström ◽  
O. Grinder ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-4 ◽  
Author(s):  
Katsuyoshi Kondoh ◽  
Thotsaphon Threrujirapapong ◽  
Hisashi Imai ◽  
Junko Umeda ◽  
Bunshi Fugetsu

By using pure titanium powder coated with unbundled multiwall carbon nanotubes (MWCNTs) via wet process, powder metallurgy (P/M) titanium matrix composite (TMC) reinforced with the CNTs was prepared by spark plasma sintering (SPS) and subsequently hot extrusion process. The microstructure and mechanical properties of P/M pure titanium and reinforced with CNTs were evaluated. The distribution of CNTs and in situ formed titanium carbide (TiC) compounds during sintering was investigated by optical and scanning electron microscopy (SEM) equipped with EDS analyzer. The mechanical properties of TMC were significantly improved by the additive of CNTs. For example, when employing the pure titanium composite powder coated with CNTs of 0.35 mass%, the increase of tensile strength and yield stress of the extruded TMC was 157 MPa and 169 MPa, respectively, compared to those of extruded titanium materials with no CNT additive. Fractured surfaces of tensile specimens were analyzed by SEM, and the uniform distribution of CNTs and TiC particles, being effective for the dispersion strengthening, at the surface of the TMC were obviously observed.


Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn+0.2GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn+0.2GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document