Label-free quantitative detection using porous silicon as optical biosensor

2012 ◽  
Vol 8 (4) ◽  
pp. 314-317
Author(s):  
Fu-ru Zhong ◽  
Xiao-lin Ma ◽  
Xiao-yi Lü ◽  
Zhen-hong Jia
Chemosensors ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 228
Author(s):  
Dashananda Nanda Kumar ◽  
Zina Baider ◽  
Daniel Elad ◽  
Shlomo E. Blum ◽  
Giorgi Shtenberg

Botulinum neurotoxins (BoNT) are the most potent toxins, which are produced by Clostridium bacteria and cause the life-threatening disease of botulism in all vertebrates. Specifically, animal botulism represents a serious environmental and economic concern in animal production due to the high mortality rates observed during outbreaks. Despite the availability of vaccines against BoNT, there are still many outbreaks of botulism worldwide. Alternative assays capable of replacing the conventional in vivo assay in terms of rapid and sensitive quantification, and the applicability for on-site analysis, have long been perused. Herein, we present a simple, highly sensitive and label-free optical biosensor for real-time detection of BoNT serotype C using a porous silicon Fabry–Pérot interferometer. A competitive immunoassay coupled to a biochemical cascade reaction was adapted for optical signal amplification. The resulting insoluble precipitates accumulated within the nanostructure changed the reflectivity spectra by alternating the averaged refractive index. The augmented optical performance allowed for a linear response within the range of 10 to 10,000 pg mL−1 while presenting a detection limit of 4.8 pg mL−1. The practical aspect of the developed assay was verified using field BoNT holotoxins to exemplify the potential use of the developed optical approach for rapid bio-diagnosis of BoNT. The specificity and selectivity of the assay were successfully validated using an adjacent holotoxin relevant for farm animals (BoNT serotype D). Overall, this work sets the foundation for implementing a miniaturized interferometer for routine on-site botulism diagnosis, thus significantly reducing the need for animal experimentation and shortening analysis turnaround for early evidence-based therapy.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1635
Author(s):  
Ya Su ◽  
Rongxin Fu ◽  
Wenli Du ◽  
Han Yang ◽  
Li Ma ◽  
...  

Quantitative measurement of single cells can provide in-depth information about cell morphology and metabolism. However, current live-cell imaging techniques have a lack of quantitative detection ability. Herein, we proposed a label-free and quantitative multichannel wide-field interferometric imaging (MWII) technique with femtogram dry mass sensitivity to monitor single-cell metabolism long-term in situ culture. We demonstrated that MWII could reveal the intrinsic status of cells despite fluctuating culture conditions with 3.48 nm optical path difference sensitivity, 0.97 fg dry mass sensitivity and 2.4% average maximum relative change (maximum change/average) in dry mass. Utilizing the MWII system, different intrinsic cell growth characteristics of dry mass between HeLa cells and Human Cervical Epithelial Cells (HCerEpiC) were studied. The dry mass of HeLa cells consistently increased before the M phase, whereas that of HCerEpiC increased and then decreased. The maximum growth rate of HeLa cells was 11.7% higher than that of HCerEpiC. Furthermore, HeLa cells were treated with Gemcitabine to reveal the relationship between single-cell heterogeneity and chemotherapeutic efficacy. The results show that cells with higher nuclear dry mass and nuclear density standard deviations were more likely to survive the chemotherapy. In conclusion, MWII was presented as a technique for single-cell dry mass quantitative measurement, which had significant potential applications for cell growth dynamics research, cell subtype analysis, cell health characterization, medication guidance and adjuvant drug development.


Optik ◽  
2015 ◽  
Vol 126 (21) ◽  
pp. 2930-2933 ◽  
Author(s):  
Nai-Fei Ren ◽  
Bing Sun ◽  
Ming-Yang Chen

2016 ◽  
Vol 80 ◽  
pp. 47-53 ◽  
Author(s):  
Nekane Reta ◽  
Andrew Michelmore ◽  
Christopher Saint ◽  
Beatriz Prieto-Simón ◽  
Nicolas H. Voelcker

2006 ◽  
Vol 128 (12) ◽  
pp. 3862-3863 ◽  
Author(s):  
Ghanashyam Acharya ◽  
Chun-Li Chang ◽  
Cagri Savran

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 448
Author(s):  
Vien Thi Tran ◽  
Heongkyu Ju

This work demonstrates the quantitative assay of cardiac Troponin I (cTnI), one of the key biomarkers for acute cardiovascular diseases (the leading cause of death worldwide) using the fluorescence-based sandwich immune reaction. Surface plasmon coupled emission (SPCE) produced by non-radiative coupling of dye molecules with surface plasmons being excitable via the reverse Kretschmann format is exploited for fluorescence-based sandwich immunoassay for quantitative detection of cTnI. The SPCE fluorescence chip utilizes the gold (2 nm)-silver (50 nm) bimetallic thin film, with which molecules of the dye Alexa 488 (conjugated with detection antibodies) make a near field coupling with the plasmonic film for SPCE. The experimental results find that the SPCE greatly improves the sensitivity via enhancing the fluorescence signal (up to 50-fold) while suppressing the photo-bleaching, permitting markedly enhanced signal-to-noise ratio. The limit of detection of 21.2 ag mL−1 (atto-gram mL−1) is obtained, the lowest ever reported to date amid those achieved by optical technologies such as luminescence and label-free optical sensing techniques. The features discovered such as ultrahigh sensitivity may prompt the presented technologies to be applied for early diagnosis of cTnI in blood, particularly for emergency medical centers overloaded with patients with acute myocardial infarction who would suffer from time-delayed diagnosis due to insufficient assay device sensitivity.


The Analyst ◽  
2021 ◽  
Author(s):  
Yan Wang ◽  
Huacai Chen ◽  
Li Jiang

Ampicillin and nitrofurantoin, as broad-spectrum antibiotics, are widely used in the prevention of animal diseases and to ensure livestock growth. Large amounts of antibiotic residues exist in animal-derived foods, affecting...


Sign in / Sign up

Export Citation Format

Share Document