Seismic retroftting of RC columns with RC jackets and wing walls with different structural details

2014 ◽  
Vol 13 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Shuenn-Yih Chang ◽  
Ting-Wei Chen ◽  
Ngoc-Cuong Tran ◽  
Wen-I Liao
2019 ◽  
Vol 84 (762) ◽  
pp. 1093-1102 ◽  
Author(s):  
Misako TSUBAKI ◽  
Yasushi SANADA ◽  
Zheng ZHANG ◽  
Koichi KUSUNOKI ◽  
Yo HIBINO ◽  
...  

2020 ◽  
Vol 85 (778) ◽  
pp. 1611-1621
Author(s):  
Yuki MOMOKA ◽  
Yasushi SANADA ◽  
Zheng ZHANG ◽  
Rokhyun YOON ◽  
Koichi KUSUNOKI ◽  
...  

Author(s):  
Yasushi Sanada ◽  
Yuebing Li

Several destructive earthquakes in developing countries in recent years have revealed that a large number of reinforced concrete (R/C) buildings contained no lateral reinforcements in beam-column joints. Severe damage was caused to such beam-column joints due to poor structural capacities, and resulted in complete/story collapse of buildings and loss of human lives. Considering the economic and technical conditions in developing countries, this paper proposes a practical seismic strengthening method for applying R/C wing walls to this kind of substandard beam-column joint. A feasible design concept is presented exemplifying an exterior beam-column joint, representing a typical earthquake-damaged joint by the 2009 West Sumatra, Indonesia earthquake. In this study, two 3/4-scale exterior beam-column joint specimens were constructed with the common structural details, and one of them was strengthened by R/C wing walls. Their seismic performance was evaluated through static cyclic loading tests. It was found that the strengthened specimen behaved a ductile manner with beam yielding, whereas the unstrengthened control specimen prematurely failed at the joint. The proposed strengthening method significantly increased the moment resistance of the joint. Fundamental experimental data could be successfully obtained to propose the calculation procedure for designing R/C wing walls for practical strengthening.


Author(s):  
A. Trillo

There are conflicting reports regarding some fine structural details of arteries from several animal species. Buck denied the existence of a sub-endothelial space, while Karrer and Keech described a space of variable width which separates the endothelium from the underlying internal elastic lamina in aortas of aging rats and mice respectively.The present communication deals with the ultrastrueture of the interface between the endothelial cell layer and the internal elastic lamina as observed in carotid arteries from rabbits of varying ages.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


Author(s):  
Alain R. Trudel ◽  
M. Trudel

AirfugeR (Beckman) direct ultracentrifugation of viral samples on electron microscopy grids offers a rapid way to concentrate viral particles or subunits and facilitate their detection and study. Using the A-100 fixed angle rotor (30°) with a K factor of 19 at maximum speed (95 000 rpm), samples up to 240 μl can be prepared for electron microscopy observation in a few minutes: observation time is decreased and structural details are highlighted. Using latex spheres to calculate the increase in sensitivity compared to the inverted drop procedure, we obtained a 10 to 40 fold increase in sensitivity depending on the size of particles. This technique also permits quantification of viral particles in samples if an aliquot is mixed with latex spheres of known concentration.Direct ultracentrifugation for electron microscopy can be performed on laboratory samples such as gradient or column fractions, infected cell supernatant, or on clinical samples such as urine, tears, cephalo-rachidian liquid, etc..


Author(s):  
Bridget Carragher ◽  
David A. Bluemke ◽  
Michael J. Potel ◽  
Robert Josephs

We have investigated the feasibility of restoring blurred electron micrographs. Two related problems have been considered; the restoration of images blurred as a result of relative motion between the specimen and the image plane, and the restoration of images which are rotationally blurred about an axis. Micrographs taken while the specimen is drifting result in images which are blurred in the direction of motion. An example of rotational blurring arises in micrographs of thin sections of helical particles viewed in cross section. The twist of the particle within the finite thickness of the section causes the image to appear rotationally blurred about the helical axis. As a result, structural details, particularly at large distances from the helical axis, will be obscured.


Author(s):  
Santosh Bhattacharyya

Three dimensional microscopic structures play an important role in the understanding of various biological and physiological phenomena. Structural details of neurons, such as the density, caliber and volumes of dendrites, are important in understanding physiological and pathological functioning of nervous systems. Even so, many of the widely used stains in biology and neurophysiology are absorbing stains, such as horseradish peroxidase (HRP), and yet most of the iterative, constrained 3D optical image reconstruction research has concentrated on fluorescence microscopy. It is clear that iterative, constrained 3D image reconstruction methodologies are needed for transmitted light brightfield (TLB) imaging as well. One of the difficulties in doing so, in the past, has been in determining the point spread function of the system.We have been developing several variations of iterative, constrained image reconstruction algorithms for TLB imaging. Some of our early testing with one of them was reported previously. These algorithms are based on a linearized model of TLB imaging.


Author(s):  
M. Boublik ◽  
N. Robakis ◽  
W. Hellmann ◽  
F. Jenkins

Ribosomes are ribonucleoprotein particles which process the genetic information coded in mRNA into protein synthesis. The analogy in function and composition of ribosomes from various sources, both prokaryotic and eukaryo-tic, imply a structural similarity. At present, high resolution electron microscopy is the most direct technique with a potential to resolve the extent of the structural homology of ribosomal particles at a macromolecular level. The structure of ribosomes is highly complex as a result of the large number of their constituents. In general, 80S eukaryotic monosomes consist of two uneven subunits - large (60S) and small (40S) - accomodating four different RNAs and approximately 80 different proteins. Mutual orientation of both subunits on the monosome is of particular interest because it determines the interface, the supposed site of interactions of ribosomes with other macro-molecules involved in peptide bond formation. Since entrapping of the contrasting solution (0.5% aqueous uranyl acetate) obscures all structural details in the interface, information on its architecture is limited to an indirect reconstruction based on the established 3-D structure of both sub-units and their mutual position after association.


2018 ◽  
Vol 28 (3) ◽  
pp. 265 ◽  
Author(s):  
Son Tung Ngo

The Amyloid beta (Aβ) oligomers are characterized as critical cytotoxic materials in Alzheimer’s disease (AD) pathogenesis. Structural details of transmembrane oligomers are inevitably necessary to design/search potential inhibitor due to treat AD. However, the experimental detections for structural modify of low-order Aβ oligomers are precluded due to the extremely dynamic fluctuation of the oligomers. In this project, the transmembrane Italian-mutant (E22K) 3Aβ11-40 (tmE22K 3Aβ11-40) was extensively investigated upon the temperature replica exchange molecular dynamics (REMD) simulations. The structural changes of the trimer when replacing the negative charged residue E22 by a positively charged residue K were monitored over simulation intervals. The oligomer size was turned to be larger and the increase of β-content was recorded. The momentous gain of intermolecular contacts with DPPC molecules implies that tmE22K 3Aβ11-40 easier self-inserts into the membrane than the WT one. Furthermore, the tighter interaction between constituting monomers was indicated implying that the E22K mutation probably enhances the Aβ fibril formation. The results are in good agreement with experiments that E22K amyloid is self-aggregate faster than the WT form. Details information of tmE22K trimer structure and kinetics probably yield the understanding of AD mechanism.


Sign in / Sign up

Export Citation Format

Share Document