Sensitivity analysis and dynamic modification of modal parameter in mechanical transmission system

2005 ◽  
Vol 4 (4) ◽  
pp. 53-58 ◽  
Author(s):  
Xie Shao-Wang ◽  
Chen Qi-Lian ◽  
Chen Chang-Zheng ◽  
Li Qing-Fen
Author(s):  
Lin Han ◽  
Dawei Zhang ◽  
Yanling Tian ◽  
Fujun Wang ◽  
Hui Xiao

The positioning accuracy of rotary feed system under load greatly depends on the static stiffness of mechanical transmission system. This paper proposes a unified static stiffness model of rotary feed system with geared transmission system. Taking the torsional stiffness of transmission shaft and mesh stiffness of gear pairs into account, the motion equations of the whole transmission system are presented. Based on the static equilibrium, a unified expression for the relationship between torsional angles of two adjacent elements is derived. Then a unified static stiffness model is presented. Furthermore, analytical expressions for sensitivity analysis of the static stiffness on the individual element’s stiffness and design parameters are derived. The presented model is verified by a traditional model, and a good agreement is obtained. The influence of phase angle of meshing gear pairs on the resultant static stiffness is investigated. An example transmission system is employed to perform the sensitivity analysis and the results are analyzed. The proposed model provides an essential tool for the design of rotary feed system satisfying requirement of static stiffness.


2021 ◽  
Vol 11 (11) ◽  
pp. 5280
Author(s):  
Jongseok Lee ◽  
Wonhyeong Jeong ◽  
Jaeoh Han ◽  
Taesu Kim ◽  
Sehoon Oh

Wheelchairs are an important means of transportation for the elderly and disabled. However, the movement of wheelchairs on long curbs and stairs is restricted. In this study, a wheelchair for climbing stairs was developed based on a mechanical transmission system that rotates the entire driving part through a link structure and an actuator to change the speed. The first mode drives the caterpillar, and the second mode drives the wheels. When driving on flat ground, it uses landing gears and wheels, and when climbing stairs, it uses the caterpillar; accordingly, a stable driving is possible. The stability of the transmission is confirmed through stress analysis. The method used in our study makes it is possible to manufacture lightweight wheelchairs because a single motor drives both the wheel and caterpillar through the transmission system.


2012 ◽  
Vol 479-481 ◽  
pp. 921-924
Author(s):  
Zhao Lin Han ◽  
Feng Liu

Abstract. Hydro-Mechanical Transmission (HMT) is a dual-power flow transmission system in which power is transferred parallel by mechanical transmission and hydraulic transmission. There are four types of HMT: torque-diffluence and torque-conflux, torque-diffluence and speed-conflux, speed-diffluence and speed-conflux, speed-diffluence and torque-conflux, when gear pair and planetary train are used as power diffluence or conflux mechanism respectively. And the result of kinematics characteristics analysis indicates that only torque-diffluence and speed-conflux type of HMT can be used as the vehicle transmission system because its output speed characteristics and pump speed characteristics can meet the requirements of the vehicle drive.


2021 ◽  
Author(s):  
Yifeng Tang ◽  
Jason Rodgers ◽  
James McCallum ◽  
Yijing Zhang ◽  
Yuji Fujii

Author(s):  
Debao Li ◽  
Fangze Li ◽  
Peiming Xu

Abstract This paper deals with the dynamic modification simulation of the structure. The expressions of sensitivity analysis of the system with non-proportional damping and proportional damping are derived at first. As for the reanalysis of modified structure, here we deal with the system to which the modification do not cause any change of the degrees of freedom. Transfer function analysis method and the method of twice coordinate transformation are expounded. As a successful example, the modification simulation of the frame of a dump truck is explained.


Sign in / Sign up

Export Citation Format

Share Document