Ab Initio Based Understanding of the Segregation and Diffusion Mechanisms of Hydrogen in Steels

JOM ◽  
2014 ◽  
Vol 66 (8) ◽  
pp. 1399-1405 ◽  
Author(s):  
T. Hickel ◽  
R. Nazarov ◽  
E. J. McEniry ◽  
G. Leyson ◽  
B. Grabowski ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 355
Author(s):  
Tamar Zelovich ◽  
Mark E. Tuckerman

Fuel cell-based anion-exchange membranes (AEMs) and proton exchange membranes (PEMs) are considered to have great potential as cost-effective, clean energy conversion devices. However, a fundamental atomistic understanding of the hydroxide and hydronium diffusion mechanisms in the AEM and PEM environment is an ongoing challenge. In this work, we aim to identify the fundamental atomistic steps governing hydroxide and hydronium transport phenomena. The motivation of this work lies in the fact that elucidating the key design differences between the hydroxide and hydronium diffusion mechanisms will play an important role in the discovery and determination of key design principles for the synthesis of new membrane materials with high ion conductivity for use in emerging fuel cell technologies. To this end, ab initio molecular dynamics simulations are presented to explore hydroxide and hydronium ion solvation complexes and diffusion mechanisms in the model AEM and PEM systems at low hydration in confined environments. We find that hydroxide diffusion in AEMs is mostly vehicular, while hydronium diffusion in model PEMs is structural. Furthermore, we find that the region between each pair of cations in AEMs creates a bottleneck for hydroxide diffusion, leading to a suppression of diffusivity, while the anions in PEMs become active participants in the hydronium diffusion, suggesting that the presence of the anions in model PEMs could potentially promote hydronium diffusion.


RSC Advances ◽  
2017 ◽  
Vol 7 (60) ◽  
pp. 37852-37857 ◽  
Author(s):  
Francesco Colonna ◽  
Christian Elsässer

We model hydrogen and oxygen absorption and diffusion in Ti2AlN via ab initio simulations to assess its corrosion protection potential.


2012 ◽  
Vol 14 (5) ◽  
pp. 1596-1606 ◽  
Author(s):  
Wen Li ◽  
Guotao Wu ◽  
Zhitao Xiong ◽  
Yuan Ping Feng ◽  
Ping Chen

1991 ◽  
Vol 05 (03) ◽  
pp. 427-459 ◽  
Author(s):  
EDWARD H. CONRAD

The study of defect formation at metal surfaces is a fundamental problem in surface physics. An understanding of defect formation is pertinent to growth and diffusion mechanisms. In addition, surface roughening, faceting, and surface melting are all defect mediated phase transitions involving the formation of different topological defects. While the importance of defects at surfaces is well recognized, the study of surface defects has been hampered by the lack of sufficiently accurate experimental techniques. In fact, it is only in the past 6 years that experiments on the thermal generation of defects on metal surfaces have been performed. This review attempts to outline both the theoretical and experimental work on surface defect formation on metal systems.


1998 ◽  
Vol 527 ◽  
Author(s):  
Zokirkhon M. Khakimov

ABSTRACTThis paper presents the self-consistent tight-binding method of new generation which, unlike other tight-binding methods, allows one to calculate structural energies of multiatomic systems (molecules, clusters, defects in solids) and their spectroscopic energies in the framework of the same computational scheme and with comparable accuracy. Reliability of the method is illustrated considering defect state problems in crystalline and amorphous silicon (electron-enhanced-atomic diffusion, metastable defect creation, defects with effective-negative correlation energies, etc.) and comparing obtained results with ab initio calculations and experimental data.


Sign in / Sign up

Export Citation Format

Share Document