Electron Backscatter Diffraction Analysis of Inconel 718 Parts Fabricated by Selective Laser Melting Additive Manufacturing

JOM ◽  
2016 ◽  
Vol 69 (2) ◽  
pp. 402-408 ◽  
Author(s):  
Xiaoqing Wang ◽  
Kevin Chou
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.


Author(s):  
Xibing Gong ◽  
Xiaoqing Wang ◽  
Vernon Cole ◽  
Zachary Jones ◽  
Kenneth Cooper ◽  
...  

In this study, the microstructures and mechanical properties of Inconel 718 fabricated from selective laser melting (SLM) process were experimentally investigated. Specimens with different build heights were prepared for microstructural observations by optical microscopy and scanning electron microscope. The texture evolution was also examined using electron backscatter diffraction (EBSD). In general, columnar γ dendrites are found along the build direction from the X-plane (side surface), while the microstructure of Z-plane (scanning surface) is characterized by equiaxed grains. The microstructures vary along the build height: the top layers present coarse columnar dendrites while the bottom layers show much narrower columnar dendrites owing to a higher cooling rate. The top layers also present the combination of a γ matrix and a higher percentage of the Laves phase, while the bottom layers show a much less Laves phase due to, again, a higher cooling rate. Random textures are shown for the SLM Inconel 718 samples. Nanoindentation tests identify the Young’s modulus and hardness of about 200 GPa and 7 GPa, respectivley.


2020 ◽  
Author(s):  
Shifeng Wen ◽  
Keyu Chen ◽  
Yusi Che ◽  
Yang Liu ◽  
Jie Gan ◽  
...  

Abstract In this study, selective laser melting (SLM) technology was used to fabricate Inconel 718/316L bimetallic multi-material with robust bonding strength, and a deep insight into the microstructural morphology, mechanical property and its strengthening mechanism of the joint was taken. The transition region with a wide of approximately 150 μm was defined and showed a dominating columnar region which was embedded in dispersed Laves phase occupied the molten of Inconel 718 closed to the joint. X-ray diffraction (XRD) pattern detected the strong peaks of γ', γ'' and a weaker peak of d phase precipitates. Electron backscatter diffraction (EBSD) analysis showed that a distinct grain coarsened region existing and Inconel 718 region had a strong fabric texture with a <001>// Z (BD) orientation. The shear strength of the as-built joint was calculated to be 449.5 MPa, which was comparable to the nickel/steel multi-materials formed by other traditional processing technologies.


Author(s):  
Xiaoqing Wang ◽  
Xibing Gong ◽  
Kevin Chou

This study presents a thorough literature review on the powder-bed laser additive manufacturing processes such as selective laser melting (SLM) of Inconel 718 parts. The paper first introduces the general aspects of powder-bed laser additive manufacturing and then discusses the unique characteristics and advantages of SLM. Moreover, the bulk of this study includes extensive discussions of microstructures and mechanical properties, together with the application ranges, of Inconel 718 parts fabricated by SLM.


Sign in / Sign up

Export Citation Format

Share Document