scholarly journals On the Use of EBSD and Microhardness to Study the Microstructure Properties of Tungsten Samples Prepared by Selective Laser Melting

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.

2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


2013 ◽  
Vol 46 (1) ◽  
pp. 216-223
Author(s):  
Shan-Rong Zhao ◽  
Hai-Jun Xu ◽  
Rong Liu ◽  
Qin-Yan Wang ◽  
Xian-Yu Liu

Snowflake-shaped dendrites of β-eucryptite–β-quartz solid solution were artificially crystallized in a matt glaze, and the crystallographic orientation of the dendrites was analysed by the electron backscatter diffraction (EBSD) technique. The six branches of a snowflake-shaped dendrite in the plane (0001) are along 〈110〉. From the orientation determination, a twin relationship and a topotactic relationship between dendrites were found. The twin axes are [011], [0{\overline 1}1] and [210], and the twin planes perpendicular to the twin axes are ({\overline 1}2{\overline 1}2) and (1{\overline 2}12). From the reticular theory of twinning, it was calculated that the twin indexn= 2 and the obliquity ω = 3.2877°. The studied dendrite is a twin by reticular pseudomerohedry with low twin index and obliquity. In the topotactic growth, no twin elements have been found, but the three main crystallographic directions 〈001〉, 〈210〉 and 〈110〉 of the two dendritic crystals overlap each other. The degree of lattice coincidence between the two crystals in this topotactic growth is also discussed.


2011 ◽  
Vol 17 (3) ◽  
pp. 316-329 ◽  
Author(s):  
Stuart I. Wright ◽  
Matthew M. Nowell ◽  
David P. Field

AbstractSince the automation of the electron backscatter diffraction (EBSD) technique, EBSD systems have become commonplace in microscopy facilities within materials science and geology research laboratories around the world. The acceptance of the technique is primarily due to the capability of EBSD to aid the research scientist in understanding the crystallographic aspects of microstructure. There has been considerable interest in using EBSD to quantify strain at the submicron scale. To apply EBSD to the characterization of strain, it is important to understand what is practically possible and the underlying assumptions and limitations. This work reviews the current state of technology in terms of strain analysis using EBSD. First, the effects of both elastic and plastic strain on individual EBSD patterns will be considered. Second, the use of EBSD maps for characterizing plastic strain will be explored. Both the potential of the technique and its limitations will be discussed along with the sensitivity of various calculation and mapping parameters.


2021 ◽  
pp. 1-11
Author(s):  
Tilman Zscheckel ◽  
Wolfgang Wisniewski ◽  
Christian Rüssel

Currently, the automated electron backscatter diffraction (EBSD) technique only allows the differentiation of the Laue groups based on an electron backscatter pattern (EBSP). This article shows that information concerning the lattice plane polarity is not only stored in the EBSP, but also in the Hough transformed EBSP where it can be easily accessed for automated evaluation. Polar Kikuchi bands lead to asymmetric peaks during the Hough transformation that are dependent on the atomic number difference of the involved atoms. The effect can be strong enough to be detected when evaluating the intensities of the regular excess and deficiency lines. Polarity detection from the Hough transformation of an EBSP cannot only enhance the utility of the EBSD technique and expand the information gained from it, but also illustrates a path toward automated polarity determination during EBSD scans.


2013 ◽  
Vol 853 ◽  
pp. 143-150 ◽  
Author(s):  
Reza A. Mirshams ◽  
Ashish K. Srivastava

This paper presents the results of an experimental investigation on the effects of orientation and grain size on nanoindentation measurements of hardness and modulus of elasticity for three polycrystalline metals: copper, nickel, and iron. Three geometrically different indenter tips were used, and the pile-ups were characterized with a surface probe instrument. The electron backscatter diffraction (EBSD) technique and a scanning electron microscope (SEM) were used to characterize grain orientation and microstructure. It was found that additional contact areas due to pile-ups have a significant effect on determination of mechanical properties by the nanoindenter.


Author(s):  
Xiao Wang ◽  
Yuetao Zhang ◽  
Zhengqing Zhou ◽  
Mingyu Huang

This paper reports the degradation assessment of mild steel during the plastic tensile process. The electron backscatter diffraction (EBSD) technique was adopted in this study. The orientation maps showed that with the increase of tensile strain, the grain surface become wrinkled, and the deviation level of intragranular orientation also increased. Meanwhile, the parameters based on the image quality of the Kikuchi bands (i.e. BC and MAD) as well as the crystallographic orientation (i.e. LAGBs content, GND density, GOS, and GROD) can be used to evaluate the degradation degree of the mild steel. The results showed that the change of BC and MAD was significant at the end of plastic stage, but was not sufficiently distinctive at the early stage; Meanwhile, the LAGBs content and GND density increased evidently during the plastic tensile. Compared with the former, the GND density exhibited stronger regularity and better evaluation effect; Besides, a general upward trend of GOS and GROD was observed at this tensile process. However, the GROD changed less at the certain plastic stage. Compared with GROD, the GOS exhibited a relatively better evaluation effect; To sum up, the GND density and GOS are the better indicators for evaluating the degradation degree of mild steel.


2017 ◽  
Vol 23 (3) ◽  
pp. 460-471 ◽  
Author(s):  
Landon T. Hansen ◽  
Brian E. Jackson ◽  
David T. Fullwood ◽  
Stuart I. Wright ◽  
Marc De Graef ◽  
...  

AbstractStudies of dislocation density evolution are fundamental to improved understanding in various areas of deformation mechanics. Recent advances in cross-correlation techniques, applied to electron backscatter diffraction (EBSD) data have particularly shed light on geometrically necessary dislocation (GND) behavior. However, the framework is relatively computationally expensive—patterns are typically saved from the EBSD scan and analyzed offline. A better understanding of the impact of EBSD pattern degradation, such as binning, compression, and various forms of noise, is vital to enable optimization of rapid and low-cost GND analysis. This paper tackles the problem by setting up a set of simulated patterns that mimic real patterns corresponding to a known GND field. The patterns are subsequently degraded in terms of resolution and noise, and the GND densities calculated from the degraded patterns using cross-correlation ESBD are compared with the known values. Some confirmation of validity of the computational degradation of patterns by considering real pattern degradation is also undertaken. The results demonstrate that the EBSD technique is not particularly sensitive to lower levels of binning and image compression, but the precision is sensitive to Poisson-type noise. Some insight is also gained concerning effects of mixed patterns at a grain boundary on measured GND content.


Sign in / Sign up

Export Citation Format

Share Document