Urban characteristics and its influence on resuspension of road dust, air quality and exposure

Author(s):  
Dheeraj Alshetty ◽  
Shiva Nagendra S. M.
2019 ◽  
Vol 19 (17) ◽  
pp. 11199-11212 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have numerically evaluated how effective selected potential measures would be for reducing the impact of road dust on ambient air particulate matter (PM10). The selected measures included a reduction of the use of studded tyres on light-duty vehicles and a reduction of the use of salt or sand for traction control. We have evaluated these measures for a street canyon located in central Helsinki for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP (NOn-exhaust Road TRaffic Induced Particle emissions) and FORE (Forecasting Of Road dust Emissions), were applied in combination with the Operational Street Pollution Model (OSPM), a street canyon dispersion model, to compute the street increments of PM10 (i.e. the fraction of PM10 concentration originating from traffic emissions at the street level) within the street canyon. The predicted concentrations were compared with the air quality measurements. Both road dust emission models reproduced the seasonal variability of the PM10 concentrations fairly well but under-predicted the annual mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % decrease in the number of vehicles using studded tyres would result in an average decrease in the non-exhaust street increment of PM10 from 10 % to 22 %, depending on the model used and the year considered. Modelled contributions of traction sand and salt to the annual mean non-exhaust street increment of PM10 ranged from 4 % to 20 % for the traction sand and from 0.1 % to 4 % for the traction salt. The results presented here can be used to support the development of optimal strategies for reducing high springtime particulate matter concentrations originating from road dust.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 449
Author(s):  
Lili Li ◽  
Kun Wang ◽  
Zhijian Sun ◽  
Weiye Wang ◽  
Qingliang Zhao ◽  
...  

Road dust is one of the primary sources of particulate matter which has implications for air quality, climate and health. With the aim of characterizing the emissions, in this study, a bottom-up approach of county level emission inventory from paved road dust based on field investigation was developed. An inventory of high-resolution paved road dust (PRD) emissions by monthly and spatial allocation at 1 km × 1 km resolution in Harbin in 2016 was compiled using accessible county level, seasonal data and local parameters based on field investigation to increase temporal-spatial resolution. The results demonstrated the total PRD emissions of TSP, PM10, and PM2.5 in Harbin were 270,207 t, 54,597 t, 14,059 t, respectively. The temporal variation trends of pollutant emissions from PRD was consistent with the characteristics of precipitation, with lower emissions in winter and summer, and higher emissions in spring and autumn. The spatial allocation of emissions has a strong association with Harbin’s road network, mainly concentrating in the central urban area compared to the surrounding counties. Through scenario analysis, positive control measures were essential and effective for PRD pollution. The inventory developed in this study reflected the level of fugitive dust on paved road in Harbin, and it could reduce particulate matter pollution with the development of mitigation strategies and could comply with air quality modelling requirements, especially in the frigid region of northeastern China.


2021 ◽  
Vol 21 (18) ◽  
pp. 14199-14213
Author(s):  
John MacInnis ◽  
Jai Prakash Chaubey ◽  
Crystal Weagle ◽  
David Atkinson ◽  
Rachel Ying-Wen Chang

Abstract. The chemical composition, sources, and concentrations of aerosol particles vary on a seasonal basis in the Arctic. While existing research has focused on understanding the occurrence of aerosol particles during the Arctic winter and spring, less is known of their occurrence during the Arctic summer. In this study, atmospheric aerosol particle chemical composition and concentration were determined during July–September 2018 at Tuktoyaktuk, NT, Canada (69.4∘ N, 133.0∘ W), to coincide with the Year of Polar Prediction's Second Special Observing Period in the Arctic. The chemical composition of fine (PM2.5) and coarse (PM10–2.5) aerosol filter samples suggests the ocean, mineral and/or road dust, and combustion were sources of the sampled aerosol particles. Mass concentrations of PM2 and PM10, estimated from optical particle counter measurements, remained within a similar range during the study. However, elevated mass concentrations coincided with a festival in the community of Tuktoyaktuk, suggesting local human activity was an important source of aerosol particles. Mass concentrations of PM2, which promote negative health effects in humans, were significantly lower at Tuktoyaktuk than the national air quality standard recommended by the government of Canada. These measurements provide an important baseline to compare with future measurements associated with the assessment of aerosol chemistry and air quality in the Arctic.


2018 ◽  
Author(s):  
Ana Stojiljkovic ◽  
Mari Kauhaniemi ◽  
Jaakko Kukkonen ◽  
Kaarle Kupiainen ◽  
Ari Karppinen ◽  
...  

Abstract. We have evaluated numerically how effective a few selected measures would be for reducing road dust. The selected measures included the reduction of the use of studded tyres in light-duty vehicles and phasing-out of salt or sand in traction control. We have evaluated these measures for a street canyon location in central Helsinki, for four years (2007–2009 and 2014). Air quality measurements were conducted in the street canyon for two years, 2009 and 2014. Two road dust emission models, NORTRIP and FORE, were applied in combination with the street canyon dispersion model OSPM to compute the street increments of PM10 within the street canyon. The predicted concentrations were compared with the air quality measurements. Both models reproduced the seasonal variability of the PM10 concentrations but under-predicted the yearly mean values. It was found that the largest reductions of concentrations could potentially be achieved by reducing the fraction of vehicles that use studded tyres. For instance, a 30 % percent decrease in the number of vehicles using studded tyres would result in an average decrease of the non-exhaust increment of PM10 from 10 to 22 %, depending on the model used and the year considered. The corresponding decrease after removal of sanding and salting would be from 4 % and 20 % and from 0.1 % to 4 %, respectively. The results can be used for finding optimal strategies for reducing the high springtime particulate matter concentrations originated from road dust.


2016 ◽  
Vol 50 (17) ◽  
pp. 9142-9149 ◽  
Author(s):  
Andrew Larkin ◽  
Aaron van Donkelaar ◽  
Jeffrey A. Geddes ◽  
Randall V. Martin ◽  
Perry Hystad

2021 ◽  
Author(s):  
John MacInnis ◽  
Jai Prakash Chaubey ◽  
Crystal Weagle ◽  
David Atkinson ◽  
Rachel Ying-Wen Chang

Abstract. The chemical composition, sources, and concentrations of aerosol particles vary on a seasonal basis in the Arctic. While existing research has focused on understanding the occurrence of aerosol particles during the Arctic winter and spring, less is known of their occurrence during the Arctic summer. In this study, atmospheric aerosol particle chemical composition and concentration were determined during July–September 2018 at Tuktoyaktuk, NT, Canada (69.4° N, 133.0° W) to coincide with the Year of Polar Prediction’s 2nd Special Observing Period in the Arctic. The chemical composition of fine (PM2.5) and coarse (PM10-2.5) aerosol filter samples suggests the ocean, mineral/road dust, and combustion were sources of the sampled aerosol particles. Mass concentrations of PM2 and PM10, estimated from optical particle counter measurements, remained within a similar range during the study. However, elevated mass concentrations coincided with a festival in the community of Tuktoyaktuk, suggesting local human activity was an important source of aerosol particles. Mass concentrations of PM2, which promote negative health effects in humans, were significantly lower at Tuktoyaktuk than the national air quality standard recommended by the Government of Canada. These measurements provide an important baseline to compare with future measurements associated with the assessment of aerosol chemistry and air quality in the Arctic.


2020 ◽  
Vol 13 (12) ◽  
pp. 6303-6323
Author(s):  
Bruce Rolstad Denby ◽  
Michael Gauss ◽  
Peter Wind ◽  
Qing Mu ◽  
Eivind Grøtting Wærsted ◽  
...  

Abstract. A description of the new air quality downscaling model – the urban EMEP (uEMEP) and its combination with the EMEP MSC-W model (European Monitoring and Evaluation Programme Meteorological Synthesising Centre West) – is presented. uEMEP is based on well-known Gaussian modelling principles. The uniqueness of the system is in its combination with the EMEP MSC-W model and the “local fraction” calculation contained within it. This allows the uEMEP model to be imbedded in the EMEP MSC-W model and downscaling can be carried out anywhere within the EMEP model domain, without any double counting of emissions, if appropriate proxy data are available that describe the spatial distribution of the emissions. This makes the model suitable for high-resolution calculations, down to 50 m, over entire countries. An example application, the Norwegian air quality forecasting and assessment system, is described where the entire country is modelled at a resolution of between 250 and 50 m. The model is validated against all available monitoring data, including traffic sites, in Norway. The results of the validation show good results for NO2, which has the best known emissions, and moderately good for PM10 and PM2.5. In Norway, the largest contributor to PM, even in cities, is long-range transport followed by road dust and domestic heating emissions. These contributors to PM are more difficult to quantify than NOx exhaust emission from traffic, which is the major contributor to NO2 concentrations. In addition to the validation results, a number of verification and sensitivity results are summarised. One verification showed that single annual mean calculations with a rotationally symmetric dispersion kernel give very similar results to the average of an entire year of hourly calculations, reducing the runtime for annual means by 4 orders of magnitude. The uEMEP model, in combination with EMEP MSC-W model, provides a new tool for assessing local-scale concentrations and exposure over large regions in a consistent and homogenous way and is suitable for large-scale policy applications.


Author(s):  
David de la Paz ◽  
Rafael Borge ◽  
Michel Vedrenne ◽  
Julio Lumbreras ◽  
Fulvio Amato ◽  
...  

2018 ◽  
Vol 28 ◽  
pp. 01003 ◽  
Author(s):  
Marek Bogacki ◽  
Marian Mazur ◽  
Robert Oleniacz ◽  
Mateusz Rzeszutek ◽  
Adriana Szulecka

Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland) together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day) and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition). Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets) and from the road surface alone (1 street). The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.


2020 ◽  
Author(s):  
Bruce Rolstad Denby ◽  
Michael Gauss ◽  
Peter Wind ◽  
Qing Mu ◽  
Eivind Grøtting Wærsted ◽  
...  

Abstract. A description of the new air quality downscaling model uEMEP and its combination with the EMEP MSC-W chemistry transport model is presented. uEMEP is based on well known Gaussian modelling principles. The uniqueness of the system is in its combination with the EMEP MSC-W model and the local fraction calculation contained within it. This allows the uEMEP model to be imbedded in the EMEP MSC-W model and downscaling can be carried out anywhere within the EMEP model domain, without any double counting of emissions, if appropriate proxy data is available that describe the spatial distribution of the emissions. This makes the model suitable for high resolution calculations, down to 50 m, over entire countries. An example application, the Norwegian air quality forecasting and assessment system, is described where the entire country is modelled at a resolution of between 250 and 50 m. The model is validated against all available monitoring data, including traffic sites, in Norway. The results of the validation show good results for NO2, which has the best known emissions, and moderately good for PM10 and PM2.5. In Norway the largest contributor to PM, even in cities, is long range transport followed by road dust and domestic heating emissions. These contributors to PM are more difficult to quantify than NO2 exhaust emission from traffic, which is the major contributor to NO2 concentrations. In addition to the validation results a number of verification and sensitivity results are summarised. One verification showed that single annual mean calculations with a rotationally symmetric dispersion kernel give very similar results to the average of an entire year of hourly calculations, reducing the run time for annual means by four orders of magnitude. The uEMEP model, in combination with EMEP MSC-W model, provides a new tool for assessing local scale concentrations and exposure over large regions in a consistent and homogenous way and is suitable for large scale policy applications.


Sign in / Sign up

Export Citation Format

Share Document