Effect of Temperature on the Crystalline Form and Fat Crystal Network of Two Model Palm Oil-Based Shortenings During Storage

2013 ◽  
Vol 7 (3) ◽  
pp. 887-900 ◽  
Author(s):  
Xia Zhang ◽  
Lin Li ◽  
He Xie ◽  
Zhili Liang ◽  
Jianyu Su ◽  
...  
1970 ◽  
Vol 5 (1) ◽  
Author(s):  
Sulaiman Al-Zuhair, Mirghani I. Ahmed and Yousif A. Abakr

This paper discusses the apparent viscosity of crude palm oil, using rotary viscometer, under different boundary conditions. It was experimentally shown that the apparent viscosity of palm oil drops with increasing of the shear rate and the temperature.  However, the effect of temperature on the viscosity tends to fade at temperatures beyond 80 oC.  A correlation between the apparent viscosity of crude palm oil and the operating conditions was developed. This correlation can be used in design of crude palm oil settlers and in determining the optimum operating conditions.Key Words:  Crude palm oil, apparent viscosity, shear rate, modelling, separation 


2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


2014 ◽  
Vol 9 ◽  
pp. 165-171 ◽  
Author(s):  
Wan Norita Wan Ab Rashid ◽  
Yoshimitsu Uemura ◽  
Katsuki Kusakabe ◽  
Noridah B. Osman ◽  
Bawadi Abdullah

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 543 ◽  
Author(s):  
Kamarza Mulia ◽  
Mohammad Nasikin ◽  
Elsa Anisa Krisanti ◽  
Ida Zahrina

Steam stripping is commonly used to remove free fatty acids from crude palm oil. An alternative deacidification method, solvent extraction performed at a much lower temperature, would preserve the natural antioxidants in the refined palm oil. In this work, palmitic acid was extracted using betaine monohydrate-propionic acid and betaine monohydrate-acetic acid deep eutectic solvents (DESs). The effect of temperature (40 °C to 80 °C), mass ratio of palm oil to solvent (2:1 to 1:2), and palmitic acid content in the palm oil feed (2% to 8% mass) on the distribution coefficient values of palmitic acid (0.44–0.93) was investigated. For the first time, a facile recovery of DESs could be accomplished by a cooling process where up to 98% of the palmitic acid separates as solid. A solvent extraction process for palm oil deacidification, employing a DES with a distribution coefficient value much higher than unity, will provide advantages over the steam stripping process.


Sign in / Sign up

Export Citation Format

Share Document