Electrostatic Spraying of Passion Fruit (Passiflora edulis L.) Peel Extract for Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on Fresh-Cut Lollo Rossa and Beetroot Leaves

2021 ◽  
Vol 14 (5) ◽  
pp. 898-908
Author(s):  
Chae-Hun Lee ◽  
Hyuk-Je Woo ◽  
Ji-Hoon Kang ◽  
Kyung Bin Song
2005 ◽  
Vol 68 (6) ◽  
pp. 1176-1187 ◽  
Author(s):  
KAYE V. SY ◽  
MELINDA B. MURRAY ◽  
M. DAVID HARRISON ◽  
LARRY R. BEUCHAT

Gaseous chlorine dioxide (ClO2) was evaluated for effectiveness in killing Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on fresh-cut lettuce, cabbage, and carrot and Salmonella, yeasts, and molds on apples, peaches, tomatoes, and onions. Inoculum (100 μl, ca. 6.8 log CFU) containing five serotypes of Salmonella enterica, five strains of E. coli O157:H7, or five strains of L. monocytogenes was deposited on the skin and cut surfaces of fresh-cut vegetables, dried for 30 min at 22°C, held for 20 h at 4°C, and then incubated for 30 min at 22°C before treatment. The skin surfaces of apples, peaches, tomatoes, and onions were inoculated with 100 μl of a cell suspension (ca. 8.0 log CFU) containing five serotypes of Salmonella, and inoculated produce was allowed to dry for 20 to 22 h at 22°C before treatment. Treatment with ClO2 at 4.1 mg/liter significantly (α = 0.05) reduced the population of foodborne pathogens on all produce. Reductions resulting from this treatment were 3.13 to 4.42 log CFU/g for fresh-cut cabbage, 5.15 to 5.88 log CFU/g for fresh-cut carrots, 1.53 to 1.58 log CFU/g for fresh-cut lettuce, 4.21 log CFU per apple, 4.33 log CFU per tomato, 1.94 log CFU per onion, and 3.23 log CFU per peach. The highest reductions in yeast and mold populations resulting from the same treatment were 1.68 log CFU per apple and 2.65 log CFU per peach. Populations of yeasts and molds on tomatoes and onions were not significantly reduced by treatment with 4.1 mg/liter ClO2. Substantial reductions in populations of pathogens on apples, tomatoes, and onions but not peaches or fresh-cut cabbage, carrot, and lettuce were achieved by treatment with gaseous ClO2 without markedly adverse effects on sensory qualities.


Food Control ◽  
2007 ◽  
Vol 18 (11) ◽  
pp. 1383-1390 ◽  
Author(s):  
Saúl Ruiz-Cruz ◽  
Evelia Acedo-Félix ◽  
Martha Díaz-Cinco ◽  
Maria A. Islas-Osuna ◽  
Gustavo A. González-Aguilar

2015 ◽  
Vol 78 (7) ◽  
pp. 1288-1295 ◽  
Author(s):  
DIKE O. UKUKU ◽  
LIHAN HUANG ◽  
CHRISTOPHER SOMMERS

For health reasons, people are consuming fresh-cut fruits with or without minimal processing and, thereby, exposing themselves to the risk of foodborne illness if such fruits are contaminated with bacterial pathogens. This study investigated survival and growth parameters of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and aerobic mesophilic bacteria transferred from cantaloupe rind surfaces to fresh-cut pieces during fresh-cut preparation. All human bacterial pathogens inoculated on cantaloupe rind surfaces averaged ~4.8 log CFU/cm2, and the populations transferred to fresh-cut pieces before washing treatments ranged from 3 to 3.5 log CFU/g for all pathogens. A nisin-based sanitizer developed in our laboratory and chlorinated water at 1,000 mg/liter were evaluated for effectiveness in minimizing transfer of bacterial populations from cantaloupe rind surface to fresh-cut pieces. Inoculated and uninoculated cantaloupes were washed for 5 min before fresh-cut preparation and storage of fresh-cut pieces at 5 and 10°C for 15 days and at 22°C for 24 h. In fresh-cut pieces from cantaloupe washed with chlorinated water, only Salmonella was found (0.9 log CFU/g), whereas E. coli O157:H7 and L. monocytogenes were positive only by enrichment. The nisin-based sanitizer prevented transfer of human bacteria from melon rind surfaces to fresh-cut pieces, and the populations in fresh-cut pieces were below detection even by enrichment. Storage temperature affected survival and the growth rate for each type of bacteria on fresh-cut cantaloupe. Specific growth rates of E. coli O157:H7, Salmonella, and L. monocytogenes in fresh-cut pieces were similar, whereas the aerobic mesophilic bacteria grew 60 to 80% faster and had shorter lag phases.


2015 ◽  
Vol 45 ◽  
pp. 254-265 ◽  
Author(s):  
Evangelia A. Zilelidou ◽  
Virginia Tsourou ◽  
Sofia Poimenidou ◽  
Anneza Loukou ◽  
Panagiotis N. Skandamis

Sign in / Sign up

Export Citation Format

Share Document