Protective Effects of Erdosteine and Vitamins C and E Combination on Ischemia–Reperfusion-Induced Lung Oxidative Stress and Plasma Copper and Zinc Levels in a Rat Hind Limb Model

2007 ◽  
Vol 118 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Mehmet Sırmalı ◽  
Efkan Uz ◽  
Rana Sırmalı ◽  
Aynur Kılbaş ◽  
H. Ramazan Yılmaz ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Rong Chen ◽  
Yun-yan Zhang ◽  
Jia-nan Lan ◽  
Hui-min Liu ◽  
Wei Li ◽  
...  

Aims. Ischemic postconditioning (IPO) has a strong protective effect against intestinal ischemia-reperfusion (IIR) injury that is partly related to autophagy. However, the precise mechanisms involved are unknown. Methods. C57BL/6J mice were subjected to unilateral IIR with or without IPO. After 45 min ischemia and 120 min reperfusion, intestinal tissues and blood were collected for examination. HE staining and Chiu’s score were used to evaluate pathologic injury. We test markers of intestinal barrier function and oxidative stress. Finally, we used WB to detect the expression of key proteins of autophagy and the Akt/GSK-3β/Nrf2 pathway. Results. IPO significantly attenuated IIR injury. Expression levels of LC3 II/I, Beclin-1, and p62 were altered during IIR, indicating that IPO enhanced autophagy. IPO also activated Akt, inhibited GSK-3β, induced Nrf2 nuclear translocation, and upregulated HO-1 and NQO1 expression, thus providing protective effects against IIR injury by suppressing oxidative stress. Consistently, the beneficial effects of IPO were abolished by pretreatment with 3-methyladenine, SC66, and brusatol, potent inhibitors of autophagy, Akt, and Nrf2, respectively. Conclusion. Our study indicates that IPO can ameliorate IIR injury by evoking autophagy, activating Akt, inactivating GSK-3β, and activating Nrf2. These findings may provide novel insights for the alleviation of IIR injury.


2003 ◽  
Vol 285 (2) ◽  
pp. L283-L292 ◽  
Author(s):  
Melpo Christofidou-Solomidou ◽  
Arnaud Scherpereel ◽  
Rainer Wiewrodt ◽  
Kimmie Ng ◽  
Thomas Sweitzer ◽  
...  

Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.


2014 ◽  
Vol 934 ◽  
pp. 165-172
Author(s):  
Cai Hong Bai ◽  
Hai Bo He ◽  
Fan Cheng ◽  
Jun Zhi Wang ◽  
Xiao Chen ◽  
...  

Saponins from Rhizoma Panacis Majoris (SRPM), the bioactive component inRhizoma Panacis Majoris, were reported to possess protective effects on myocardial injury, but the underlying mechanisms remain poorly understood. This study was performed to investigate the protective effects and possible mechanism of SRPM on myocardial ischemia/reperfusion (I/R) injury in vivo. Cardioprotective effects of SPRM in I/R rats was evaluated by hemodynamic, infarct size, biochemical values, histopathological observations, antioxidative relative gene expressions; And the antioxidant activity of SPRM was studied using DPPH scavenging and β-carotene/linoleic acid tests. In the study, we found that SRPM possessed significant free radical-scavenging activity and considerable antioxidant activity, and significantly improved cardiac function, serum biochemical index and antioxidation level, decreased infarct size, reversed the down-regulated mRNA expressions of the SOD1, SOD2, SOD3 in I/R rats. The studies demonstrated that oxidative stress caused the overgeneration and accumulation of ROS, which was central of myocardial I/R injury. SPRM exerted beneficially cardioprotective effects on myocardial I/R injury, mainly scavenging oxidative stress-triggered overgeneration and accumulation of ROS, alleviating myocardial I/R injury and apoptotic cell death.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Longcheng Shang ◽  
Haozhen Ren ◽  
Shuai Wang ◽  
Hanyi Liu ◽  
Anyin Hu ◽  
...  

Ischemia-reperfusion injury (IRI) is a common complication in liver surgeries. It is a focus to discover effective treatments to reduce ischemia-reperfusion injury. Previous studies show that oxidative stress and inflammation response contribute to the liver damage during IRI. SS-31 is an innovated mitochondrial-targeted antioxidant peptide shown to scavenge reactive oxygen species and decrease oxidative stress, but the protective effects of SS-31 against hepatic IRI are not well understood. The aim of our study is to investigate whether SS-31 could protect the liver from damages induced by IRI and understand the protective mechanism. The results showed that SS-31 treatment can significantly attenuate liver injury during IRI, proved by HE staining, serum ALT/AST, and TUNEL staining which can assess the degree of liver damage. Meanwhile, we find that oxidative stress and inflammation were significantly suppressed after SS-31 administration. Furthermore, the mechanism revealed that SS-31 can directly decrease ROS production and regulate STAT1/STAT3 signaling in macrophages, thus inhibiting macrophage M1 polarization. The proinflammation cytokines are then significantly reduced, which suppress inflammation response in the liver. Taken together, our study discovered that SS-31 can regulate macrophage polarization through ROS scavenging and STAT1/STAT3 signaling to ameliorate liver injury; the protective effects against hepatic IRI suggest that SS-31 may be an appropriate treatment for liver IRI in the clinic.


Sign in / Sign up

Export Citation Format

Share Document