Activation of TR4 orphan nuclear receptor gene promoter by cAMP/PKA and C/EBP signaling

Endocrine ◽  
2009 ◽  
Vol 36 (2) ◽  
pp. 211-217 ◽  
Author(s):  
Ning-Chun Liu ◽  
Wen-Jye Lin ◽  
I-Chen Yu ◽  
Hung-Yun Lin ◽  
Su Liu ◽  
...  
1999 ◽  
Vol 19 (1) ◽  
pp. 864-872 ◽  
Author(s):  
Jian-Shen Qi ◽  
Yaping Yuan ◽  
Vandana Desai-Yajnik ◽  
Herbert H. Samuels

ABSTRACT The mdm2 gene is positively regulated by p53 through a p53-responsive DNA element in the first intron of the mdm2gene. mdm2 binds p53, thereby abrogating the ability of p53 to activate the mdm2 gene, and thus forming an autoregulatory loop ofmdm2 gene regulation. Although the mdm2 gene is thought to act as an oncogene by blocking the activity of p53, recent studies indicate that mdm2 can act independently of p53 and block the G1 cell cycle arrest mediated by members of the retinoblastoma gene family and can activate E2F1/DP1 and the cyclin A gene promoter. In addition, factors other than p53 have recently been shown to regulate the mdm2 gene. In this article, we report that thyroid hormone (T3) receptors (T3Rs), but not the closely related members of the nuclear thyroid hormone/retinoid receptor gene family (retinoic acid receptor, vitamin D receptor, peroxisome proliferation activation receptor, or retinoid X receptor), regulate mdm2 through the same intron sequences that are modulated by p53. Chicken ovalbumin upstream promoter transcription factor I, an orphan nuclear receptor which normally acts as a transcriptional repressor, also activatesmdm2 through the same intron region of the mdm2gene. Two T3R-responsive DNA elements were identified and further mapped to sequences within each of the p53 binding sites of themdm2 intron. A 10-amino-acid sequence in the N-terminal region of T3Rα that is important for transactivation and interaction with TFIIB was also found to be important for activation of themdm2 gene response element. T3 was found to stimulate the endogenous mdm2 gene in GH4C1 cells. These cells are known to express T3Rs, and T3 is known to stimulate replication of these cells via an effect in the G1 phase of the cell cycle. Our findings, which indicate that T3Rs can regulate the mdm2gene independently of p53, provide an explanation for certain known effects of T3 and T3Rs on cell proliferation. In addition, these findings provide further evidence for p53-independent regulation of mdm2 which could lead to the development of tumors from cells that express low levels of p53 or that express p53 mutants defective in binding to and activating the mdm2 gene.


Oncogene ◽  
1998 ◽  
Vol 17 (19) ◽  
pp. 2429-2435 ◽  
Author(s):  
Jean-Marc Vanacker ◽  
Edith Bonnelye ◽  
Cateline Delmarre ◽  
Vincent Laudet

2005 ◽  
Vol 19 (6) ◽  
pp. 1452-1459 ◽  
Author(s):  
Lei Yin ◽  
Mitchell A. Lazar

Abstract Transcriptional regulation plays a fundamental role in controlling circadian oscillation of clock gene expression. The orphan nuclear receptor Rev-erbα has recently been implicated as a major regulator of the circadian clock. Expression of Bmal1, the master regulator of circadian rhythm in mammals, is negatively correlated with Rev-erbα mRNA level, but the molecular mechanism underlying this regulation is largely unknown. Here we show that Rev-erbα dramatically represses the basal activity of the mouse Bmal1 gene promoter via two monomeric binding sites, both of which are required for repression and are conserved between mouse and human. Rev-erbα directly binds to the mouse Bmal1 promoter and recruits the endogenous nuclear receptor corepressor (N-CoR)/histone deacetylase 3 (HDAC3) complex, in association with a decrease in histone acetylation. The endogenous N-CoR/HDAC3 complex is also associated with the endogenous Bmal1 promoter in human HepG2 liver cells, where a reduction in cellular HDAC3 level markedly increases the expression of Bmal1 mRNA. These data demonstrate a new function for the N-CoR/HDAC3 complex in regulating the expression of genes involved in circadian rhythm by functioning as corepressor for Rev-erbα.


2007 ◽  
Vol 38 (5) ◽  
pp. 555-568 ◽  
Author(s):  
Tomoko Kakizawa ◽  
Shin-ichi Nishio ◽  
Gerard Triqueneaux ◽  
Stephanie Bertrand ◽  
Juliette Rambaud ◽  
...  

The orphan nuclear receptor Rev-erbα (NR1D1) plays an important role in the regulation of the circadian pacemaker and its expression has been shown to be regulated with a robust circadian rhythm in zebrafish and mammals. In addition, in zebrafish its expression has been shown to be developmentally regulated. In order to analyze the mechanisms of the zfRev-erbα gene regulation, we have isolated its 5′-upstream region. We found that two promoters control the zfRev-erbα expression. The first one (ZfP1) is characterized by a very high degree of sequence identity with the mammalian P1 promoter and contains, as the mammalian P1, a functional Rev-erbα-binding site (RevDR2). Inhibition of zfRev-erbα activity in zebrafish embryos using antisense-morpholino knockdown results in an increase of zfRev-erbα gene expression suggesting that zfRev-erbα is repressing its own transcription in vivo. In addition, we show that ROR orphan receptors also regulate in vitro and in vivo zfRev-erbα gene expression through the same RevDR2 element. In contrast, the second promoter ZfP2 is strikingly different from the mammalian P2: its sequence is not conserved between zebrafish and mammals and is not regulated by the same transcription factors. Together, these data suggest that ZfP1 is orthologous to the mammalian P1 promoter, whereas zebrafish ZfP2 has no mammalian ortholog and does not function like ZfP1 to control Rev-erbα expression.


Sign in / Sign up

Export Citation Format

Share Document