Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide

2010 ◽  
Vol 28 (4) ◽  
pp. 1225-1254 ◽  
Author(s):  
Xi Wang ◽  
Ping Gao ◽  
Min Long ◽  
Fang Lin ◽  
Jun-Xia Wei ◽  
...  
2021 ◽  
Vol 13 (1) ◽  
pp. 17-29
Author(s):  
Emann M Rabie ◽  
Sherry X Zhang ◽  
Andreas P Kourouklis ◽  
A Nihan Kilinc ◽  
Allison K Simi ◽  
...  

Abstract Metastasis, the leading cause of mortality in cancer patients, depends upon the ability of cancer cells to invade into the extracellular matrix that surrounds the primary tumor and to escape into the vasculature. To investigate the features of the microenvironment that regulate invasion and escape, we generated solid microtumors of MDA-MB-231 human breast carcinoma cells within gels of type I collagen. The microtumors were formed at defined distances adjacent to an empty cavity, which served as an artificial vessel into which the constituent tumor cells could escape. To define the relative contributions of matrix degradation and cell proliferation on invasion and escape, we used pharmacological approaches to block the activity of matrix metalloproteinases (MMPs) or to arrest the cell cycle. We found that blocking MMP activity prevents both invasion and escape of the breast cancer cells. Surprisingly, blocking proliferation increases the rate of invasion but has no effect on that of escape. We found that arresting the cell cycle increases the expression of MMPs, consistent with the increased rate of invasion. To gain additional insight into the role of cell proliferation in the invasion process, we generated microtumors from cells that express the fluorescent ubiquitination-based cell cycle indicator. We found that the cells that initiate invasions are preferentially quiescent, whereas cell proliferation is associated with the extension of invasions. These data suggest that matrix degradation and cell proliferation are coupled during the invasion and escape of human breast cancer cells and highlight the critical role of matrix proteolysis in governing tumor phenotype.


2021 ◽  
Vol 11 ◽  
Author(s):  
Qianxue Wu ◽  
Xin Tang ◽  
Wenming Zhu ◽  
Qing Li ◽  
Xiang Zhang ◽  
...  

BackgroundPatients with triple-negative breast cancer (TNBC) have poor overall survival. The present study aimed to investigate the potential prognostics of TNBC by analyzing breast cancer proteomic and transcriptomic datasets.MethodsCandidate proteins selected from CPTAC (the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) were validated using datasets from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Kaplan-Meier analysis and ROC (receiver operating characteristic) curve analysis were performed to explore the prognosis of candidate genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed on the suspected candidate genes. Single-cell RNA-seq (scRNA-seq) data from GSE118389 were used to analyze the cell clusters in which OBFC2A (Oligosaccharide-Binding Fold-Containing Protein 2A) was mainly distributed. TIMER (Tumor Immune Estimation Resource) was used to verify the correlation between OBFC2A expression and immune infiltration. Clone formation assays and wound healing assays were used to detect the role of OBFC2A expression on the proliferation, invasion, and migration of breast cancer cells. Flow cytometry was used to analyze the effects of silencing OBFC2A on breast cancer cell cycle and apoptosis.ResultsSix candidate proteins were found to be differentially expressed in non-TNBC and TNBC groups from CPTAC. However, only OBFC2A was identified as an independently poor prognostic gene marker in METABRIC (HR=3.658, 1.881-7.114). And OBFC2A was associated with immune functions in breast cancer. Biological functional experiments showed that OBFC2A might promote the proliferation and migration of breast cancer cells. The inhibition of OBFC2A expression blocked the cell cycle in G1 phase and inhibited the transformation from G1 phase to S phase. Finally, downregulation of OBFC2A also increased the total apoptosis rate of cells.ConclusionOn this basis, OBFC2A may be a potential prognostic biomarker for TNBC.


Cell Calcium ◽  
2014 ◽  
Vol 56 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Elia Ranzato ◽  
Valeria Magnelli ◽  
Simona Martinotti ◽  
Zeina Waheed ◽  
Stuart M. Cain ◽  
...  

2020 ◽  
Author(s):  
Xiaofeng Dai ◽  
Lihui Yu ◽  
Xiao Chen ◽  
Jianying Zhang

Abstract Background SNRPD1 is a spliceosome-associated protein and has previously been implicated with important roles in cancer development. Methods Through analyzing the differential expression patterns and clinical association of splicing associated genes among tumor and tumor adjacent samples across different tumors and among different breast cancer subtypes, we identify the tumor promotive role of SNRPD1 using multiple publicly available datasets. Through pathway, gene ontology enrichment analysis and network construction, we linked the onco-therapeutic role of SNRPD1 with cell cycle. Via a series of experimental studies including knockdown assay, qPCR, western blotting, cell cycle, drug response assay, we confirmed the higher expression of SNPRD1 at both gene and protein expression levels in triple negative breast cancer cells, as well as its roles in promoting cell cycle and chemotherapy response. Results Our study revealed that SNRPD1 over-expression was significantly associated with genes involved in cell cycle, cell mitosis and chromatin replication, and silencing SNRPD1 in breast cancer cells could lead to halted tumor cell growth and cell cycle arrest at the G0/G1 stage. We also found that triple negative breast cancer cells with reduced SNRPD1 expression gained reduced sensitivity to doxorubicin whereas luminal cancer cells did not. Conclusions Our results suggested the prognostic value of SNRPD1 on breast cancer survival, its potential as the therapeutic target halting cell cycle progression for breast cancer control, and warranted special attention on the combined use of doxorubicin and drugs targeting SNRPD1.


Author(s):  
Zheng Yang Lee ◽  
Chee Hong Leong ◽  
Krystal U Ling Lim ◽  
Christopher Chun Sing Wong ◽  
Pornwasu Pongtheerawan ◽  
...  

Background: Copper complex has been gaining much attention in anticancer research as targeted agent since cancer cells uptake more copper than non-cancerous cells. Our group has synthesised a ternary copper complex which is composed of 1,10-phenanthroline and tyrosine [Cu(phen)(L-tyr)Cl].3H20. These two payloads are designed to cleave DNA and inhibit protein degradation system (proteasome) concurrently in cancer cells, making this copper complex a dual-target compound. Objective: Current study was carried out to investigate the mode of cell death and role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20 in MCF-7 and MDA-MB-231 breast cancer cells. Methods: Growth inhibition of [Cu(phen)(L-tyr)Cl].3H20 towards MDA-MB-231 and human non-cancerous MCF10A breast cells was determined by MTT assay. Annexin-V-FITC/PI and cell cycle analysis were evaluated by flow cytometry. The expression of p53, Bax, caspase-9, caspase-7, caspase-3 and LC3 were determined using western blot analysis. The cells were then co-treated with hydroxychloroquine to ascertain the role of autophagy induced by [Cu(phen)(L-tyr)Cl].3H20. Results: [Cu(phen)(L-tyr)Cl].3H20 inhibited the growth of cancer cells dose-dependently with less toxicity towards MCF10A cells. Additionally, [Cu(phen)(L-tyr)Cl].3H20 induced apoptosis and cell cycle arrest towards MCF-7 and MDA-MB-231 breast cancer cells possibly via regulation of p53, Bax, caspase-9, caspase-3 and capase-7. The expression of LC3II was upregulated in both cancer cell lines upon treatment with [Cu(phen)(L-tyr) Cl].3H20, indicating the induction of autophagy. Co-treatment with autophagy inhibitor hydroxychloroquine significantly enhanced growth inhibition of both cell lines, suggesting that the autophagy induced by [Cu(phen)(L-tyr) Cl].3H20 in both breast cancer cells was promoting cell survival. Conclusion: [Cu(phen)(L-tyr)Cl].3H20 holds great potential to be developed for breast cancer treatment.


Oncogene ◽  
1998 ◽  
Vol 16 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Jacqueline Alblas ◽  
Rivka Slager-Davidov ◽  
Paul H Steenbergh ◽  
John S Sussenbach ◽  
Bart van der Burg

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaofeng Dai ◽  
Lihui Yu ◽  
Xiao Chen ◽  
Jianying Zhang

Abstract Background SNRPD1 is a spliceosome-associated protein and has previously been implicated with important roles in cancer development. Methods Through analyzing the differential expression patterns and clinical association of splicing associated genes among tumor and tumor adjacent samples across different tumors and among different breast cancer subtypes, we identify the tumor promotive role of SNRPD1 using multiple publicly available datasets. Through pathway, gene ontology enrichment analysis and network construction, we linked the onco-therapeutic role of SNRPD1 with cell cycle. Via a series of experimental studies including knockdown assay, qPCR, western blotting, cell cycle, drug response assay, we confirmed the higher expression of SNPRD1 at both gene and protein expression levels in triple negative breast cancer cells, as well as its roles in promoting cell cycle and chemotherapy response. Results Our study revealed that SNRPD1 over-expression was significantly associated with genes involved in cell cycle, cell mitosis and chromatin replication, and silencing SNRPD1 in breast cancer cells could lead to halted tumor cell growth and cell cycle arrest at the G0/G1 stage. We also found that triple negative breast cancer cells with reduced SNRPD1 expression lost certain sensitivity to doxorubicin whereas luminal cancer cells did not. Conclusions Our results suggested the prognostic value of SNRPD1 on breast cancer survival, its potential as the therapeutic target halting cell cycle progression for breast cancer control, and warranted special attention on the combined use of doxorubicin and drugs targeting SNRPD1.


2021 ◽  
Author(s):  
Xiaofeng Dai ◽  
Lihui Yu ◽  
Xiao Chen ◽  
Jianying Zhang

Abstract Background: SNRPD1 is a spliceosome-associated protein and has previously been implicated with important roles in cancer development. Methods: Through analyzing the differential expression patterns and clinical association of splicing associated genes among tumor and tumor adjacent samples across different tumors and among different breast cancer subtypes, we identify the tumor promotive role of SNRPD1 using multiple publicly available datasets. Through pathway, gene ontology enrichment analysis and network construction, we linked the onco-therapeutic role of SNRPD1 with cell cycle. Via a series of experimental studies including knockdown assay, qPCR, western blotting, cell cycle, drug response assay, we confirmed the higher expression of SNPRD1 at both gene and protein expression levels in triple negative breast cancer cells, as well as its roles in promoting cell cycle and chemotherapy response.Results: Our study revealed that SNRPD1 over-expression was significantly associated with genes involved in cell cycle, cell mitosis and chromatin replication, and silencing SNRPD1 in breast cancer cells could lead to halted tumor cell growth and cell cycle arrest at the G0/G1 stage. We also found that triple negative breast cancer cells with reduced SNRPD1 expression lost certain sensitivity to doxorubicin whereas luminal cancer cells did not.Conclusions: Our results suggested the prognostic value of SNRPD1 on breast cancer survival, its potential as the therapeutic target halting cell cycle progression for breast cancer control, and warranted special attention on the combined use of doxorubicin and drugs targeting SNRPD1.


Sign in / Sign up

Export Citation Format

Share Document