High expression of TIMP-1 in human breast cancer tissues is a predictive of resistance to paclitaxel-based chemotherapy

2012 ◽  
Vol 29 (5) ◽  
pp. 3207-3215 ◽  
Author(s):  
Dongliang Zhu ◽  
Xiaoming Zha ◽  
Meiling Hu ◽  
Aidi Tao ◽  
Hangbo Zhou ◽  
...  
1994 ◽  
Vol 269 (16) ◽  
pp. 12285-12289
Author(s):  
F.H. Sarkar ◽  
M.R. Smith ◽  
T. Hoover ◽  
G. Princler ◽  
J.D. Crissman ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 1422-1428 ◽  
Author(s):  
Diane Pannier ◽  
Géraldine Philippin-Lauridant ◽  
Marie-Christine Baranzelli ◽  
Delphine Bertin ◽  
Emilie Bogart ◽  
...  

2006 ◽  
Vol 4 (2) ◽  
pp. 146
Author(s):  
E.J. Jung ◽  
Moon ◽  
S.T. Park ◽  
W.S. Ha ◽  
S.C. Hong ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Kai Fang ◽  
Hu Caixia ◽  
Zhang Xiufen ◽  
Guo Zijian ◽  
Lihua Li

Understanding of prognostic factors and therapeutic targets for breast cancer is imperative for guidance of patient care. We studied 1203 tumour samples from the Gene Expression Omnibus (GEO) to evaluate potential genes related to breast cancer. R software was used to analyse differentially expressed long noncoding RNAs (lncRNAs) in the RNA microarray expression profiles GSE45827 and GSE65216 and to identify a series of differentially expressed lncRNAs associated with human breast cancer. Of these lncRNAs, A2M-AS1, a lncRNA that has not been previously reported, was significantly upregulated in human breast cancer tissues compared with adjacent nontumour tissues. Importantly, A2M-AS1 upregulation was significantly associated with ER-negative, HER2-positive, and basal-like breast cancer and with poor recurrence-free survival and metastasis-free survival in breast cancer patients. After validating these results in 96 collected human breast cancer tissues and 64 paired adjacent noncancerous tissues, we further investigated the roles of A2M-AS1 in human ER-negative and basal-like breast cancer cells. The results revealed that A2M-AS1 significantly promotes human breast cancer cell proliferation, invasion, and migration. Additionally, bioinformatics analysis of genes coexpressed with A2M-AS1 in the context of human breast cancer combined with qRT-PCR and Western blot assays revealed that A2M-AS1 exerts regulatory effects on downstream factors in the cell adhesion molecule pathway, including CD2 and SELL. These results imply that A2M-AS1 might be a promising candidate prognostic factor and therapeutic target for breast cancer.


2014 ◽  
Vol 39 (24) ◽  
pp. 6787 ◽  
Author(s):  
Yang Pu ◽  
Laura A. Sordillo ◽  
Yuanlong Yang ◽  
R. R. Alfano

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13510-13510
Author(s):  
S. E. Hahn ◽  
L. A. da Cruz ◽  
D. Sayegh ◽  
A. Ferry ◽  
K. O’Reilly ◽  
...  

13510 Background: CD44 (an adhesion molecule and stem cell antigen), CD59 (a complement-inhibitory molecule), MCSP (an adhesion and cell-cell interactions), and Trop-2 (EpCam a related signaling molecule) represent a group of biologically-significant cancer proteins acting through distinct mechanisms. We have described Abs with in vitro and in vivo cancer suppressive activity to this group of targets. However, their effectiveness depends on the phenotype of malignant cells; cell response should correlate with expression of its Ag, and tumor cells represent a heterogeneous group of non-synchronous cells. The present study describes the efficacy of those antibodies in breast cancer models and the prevalence of their antigen targets in a survey of human breast cancer tissues. Methods: In vivo activity of antibodies ARH460–16–2 (anti-CD44), AR36A36.11.1 (anti-CD59), AR11BD-2E11–2 (anti-MCSP), and AR47A6.4.2 (anti-Trop-2) in estrogen-dependent and hormone sensitive xenograft models of human breast cancer was examined. In addition, distribution of the antigens in breast cancer was determined by immunohistochemistry using tumor tissue arrays of breast cancer sections from distinct patients. Results: Treatment of an established breast cancer model with ARH460–16–2 resulted in 51% median tumor xenograft suppression (p<0.05), as well as increased survival in an MDA-MB-231 (breast cancer) grafted model. 63% of human breast cancer sections expressed the CD44 antigen. Treatment with anti-CD59 antibody AR36A36.11.1 resulted in 68% xenograft tumor suppression (p<0.005). AR47A6.4.2 anti-Trop-2 antibody bound to 100% of human breast cancer sections tested, and showed efficacy in the estrogen- dependent MCF-7 breast cancer model. Anti-MCSP antibody AR11BD-2E11–2 demonstrated 80% tumor growth inhibition (p<0.001), increased survival in an estrogen-dependent model of breast cancer, and was found to stain 62% of breast cancer tissues examined. Conclusions: The heterogeneity of breast cancer cell phenotypes in in vitro and in vivo studies and variable composite cellular antigen targets is the basis for the therapeutic use of multiple antibodies, each with independent mechanisms of action, and offers a rationale for combined antibody therapy in selected patients. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document