Long Non-coding RNA TPT1-AS1 Suppresses APC Transcription in a STAT1-Dependent Manner to Increase the Stemness of Colorectal Cancer Stem Cells

Author(s):  
Bingxue Chen ◽  
Haojie Sun ◽  
Suting Xu ◽  
Qi Mo
Author(s):  
Xiaohong Mao ◽  
Xin Zhang ◽  
Xiaowei Zheng ◽  
Yongwu Chen ◽  
Zixue Xuan ◽  
...  

Abstract Colorectal cancer stem cells (CSCs) have the potential for self-renewal, proliferation, and differentiation. And LGR5 is a stem cell marker gene of colorectal cancer. Curcumin can suppress oncogenicity of many cancer cells, yet the effect and mechanism of curcumin in LGR5(+) colorectal cancer stem cells (CSCs) have not been studied. In this study, we studied the effect of curcumin on LGR5(+) colorectal CSCs using the experiments of tumorsphere formation, cell viability and cell apoptosis. Then autophagy analysis, RNA-Seq, and real-time PCR were used to identify the mechanism responsible for the inhibition of LGR5(+) colorectal CSCs. Our results showed that curcumin inhibited tumorsphere formation, decreased cell viability in a dose-dependent manner, and also promoted apoptosis of LGR5(+) colorectal CSCs. Next, we found curcumin induced autophagy of LGR5(+) colorectal CSCs. When LGR5(+) colorectal CSCs were co-treated with curcumin and the autophagy inhibitor (hydroxychloroquine), curcumin-induced cell proliferation inhibition decreased. In addition, we also found that curcumin inhibited the extracellular matrix (ECM)-receptor interaction pathway via the downregulation of the following genes: GP1BB, COL9A3, COMP, AGRN, ITGB4, LAMA5, COL2A1, ITGB6, ITGA1, and TNC. Further, these genes were transcriptionally regulated by TFAP2A, and the high expression of TFAP2A was associated with poor prognosis in colorectal cancer. In conclusion, curcumin suppressed LGR5(+) colorectal CSCs, potentially by inducing autophagy and repressing the oncogenic TFAP2A-mediated ECM pathway. Graphic abstract


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1833
Author(s):  
Tsai-Tsen Liao ◽  
Wei-Chung Cheng ◽  
Chih-Yung Yang ◽  
Yin-Quan Chen ◽  
Shu-Han Su ◽  
...  

Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.


2021 ◽  
Author(s):  
Yingru Zhang ◽  
Chunpu Li ◽  
Ru Jia ◽  
Ruixuan Gao ◽  
Yiyang Zhao ◽  
...  

A new nano-micelle system with better water solubility and sustained drug release effect, targeting colorectal cancer stem cells, effectively inhibits the growth and metastasis of colorectal cancer via the Wnt/β-catenin signaling pathway.


2021 ◽  
Author(s):  
Takaaki Yoshikawa ◽  
Akihisa Fukuda ◽  
Mayuki Omatsu ◽  
Mio Namikawa ◽  
Makoto Sono ◽  
...  

2021 ◽  
Author(s):  
Mingli Yang ◽  
Thomas B. Davis B. Davis ◽  
Michael V. Nebozhyn ◽  
Andrey Loboda ◽  
Heiman Wang ◽  
...  

Gene Reports ◽  
2021 ◽  
pp. 101415
Author(s):  
Hamed Manoochehri ◽  
Shafagh Asadi ◽  
Hamid Tanzadehpanah ◽  
Mohsen Sheykhhasan ◽  
Masoud Ghorbani

2019 ◽  
Vol 156 (3) ◽  
pp. 708-721.e15 ◽  
Author(s):  
Fang Hua ◽  
Shuang Shang ◽  
Yu-wei Yang ◽  
Hai-zeng Zhang ◽  
Tian-lei Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document