Phosphorylation of CRMP2 by Cdk5 Negatively Regulates the Surface Delivery and Synaptic Function of AMPA Receptors

Author(s):  
Longfei Cheng ◽  
Keen Chen ◽  
Jiong Li ◽  
Jiaming Wu ◽  
Jiaqi Zhang ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jyoji Morise ◽  
Kenichi G. N. Suzuki ◽  
Ayaka Kitagawa ◽  
Yoshihiko Wakazono ◽  
Kogo Takamiya ◽  
...  

AbstractThe number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1–4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition. However, by observing GluA1 and GluA2 at the level of single molecules, we find that the homo- and heterotetramers are metastable, instantaneously falling apart into monomers, dimers, or trimers (in 100 and 200 ms, respectively), which readily form tetramers again. In the dendritic plasma membrane, GluA1 and GluA2 monomers and dimers are far more mobile than tetramers and enter and exit from the synaptic regions. We conclude that AMPAR turnover by lateral diffusion, essential for sustaining synaptic function, is largely done by monomers of AMPAR subunits, rather than preformed tetramers.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Leanne J M Schmitz ◽  
Remco V Klaassen ◽  
Marta Ruiperez-Alonso ◽  
Azra Elia Zamri ◽  
Jasper Stroeder ◽  
...  

Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall.


2021 ◽  
Author(s):  
A.M. Ramsey ◽  
A.H. Tang ◽  
T.A. LeGates ◽  
X.Z. Gou ◽  
B.E. Carbone ◽  
...  

AbstractRecent evidence suggests that nanoorganization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this idea. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors, we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale de-clustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function, and support the novel concept that adhesion molecules acutely position AMPA receptors to dynamically control synaptic strength.


2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Maria Casas ◽  
Rut Fadó ◽  
José Luis Domínguez ◽  
Aina Roig ◽  
Moena Kaku ◽  
...  

Carnitine palmitoyltransferase 1C (CPT1C) is a sensor of malonyl-CoA and is located in the ER of neurons. AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the brain and play a key role in synaptic plasticity. In the present study, we demonstrate across different metabolic stress conditions that modulate malonyl-CoA levels in cortical neurons that CPT1C regulates the trafficking of the major AMPAR subunit, GluA1, through the phosphatidyl-inositol-4-phosphate (PI(4)P) phosphatase SAC1. In normal conditions, CPT1C down-regulates SAC1 catalytic activity, allowing efficient GluA1 trafficking to the plasma membrane. However, under low malonyl-CoA levels, such as during glucose depletion, CPT1C-dependent inhibition of SAC1 is released, facilitating SAC1’s translocation to ER-TGN contact sites to decrease TGN PI(4)P pools and trigger GluA1 retention at the TGN. Results reveal that GluA1 trafficking is regulated by CPT1C sensing of malonyl-CoA and provide the first report of a SAC1 inhibitor. Moreover, they shed light on how nutrients can affect synaptic function and cognition.


2016 ◽  
Vol 113 (19) ◽  
pp. E2695-E2704 ◽  
Author(s):  
Mengping Wei ◽  
Jian Zhang ◽  
Moye Jia ◽  
Chaojuan Yang ◽  
Yunlong Pan ◽  
...  

In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. α/β-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.


2003 ◽  
Vol 23 (11) ◽  
pp. 4567-4576 ◽  
Author(s):  
Gavin Rumbaugh ◽  
Gek-Ming Sia ◽  
Craig C. Garner ◽  
Richard L. Huganir

2015 ◽  
Vol 114 (1) ◽  
pp. 159-169 ◽  
Author(s):  
Hildebrando Candido Ferreira-Neto ◽  
Vagner R. Antunes ◽  
Javier E. Stern

We have previously shown that ATP within the paraventricular nucleus (PVN) induces an increase in sympathetic activity, an effect attenuated by the antagonism of P2 and/or glutamatergic receptors. Here, we evaluated precise cellular mechanisms underlying the ATP-glutamate interaction in the PVN and assessed whether this receptor coupling contributed to osmotically driven sympathetic PVN neuronal activity. Whole-cell patch-clamp recordings obtained from PVN-rostral ventrolateral medulla neurons showed that ATP (100 μM, 1 min, bath applied) induced an increase in firing rate (89%), an effect blocked by kynurenic acid (1 mM) or 4-[[4-Formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid tetrasodium salt (PPADS) (10 μM). Whereas ATP did not affect glutamate synaptic function, α-amino-3-hydroxy-5-methylisoxazole propionic acid (AMPA) receptor-mediated currents evoked by focal application of AMPA (50 μM, n = 13) were increased in magnitude by ATP (AMPA amplitude: 33%, AMPA area: 52%). ATP potentiation of AMPA currents was blocked by PPADS ( n = 12) and by chelation of intracellular Ca2+ (BAPTA, n = 10). Finally, a hyperosmotic stimulus (mannitol 1%, +55 mosM, n = 8) potentiated evoked AMPA currents (53%), an effect blocked by PPADS ( n = 6). Taken together, our data support a functional stimulatory coupling between P2 and AMPA receptors (likely of extrasynaptic location) in PVN sympathetic neurons, which is engaged in response to an acute hyperosmotic stimulus, which might contribute in turn to osmotically driven sympathoexcitatory responses by the PVN.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shi-Xiao Peng ◽  
Yue-Ying Wang ◽  
Min Zhang ◽  
Yan-Yu Zang ◽  
Dan Wu ◽  
...  

AbstractIn the brain, AMPA receptors mediate fast excitatory neurotransmission, the dysfunction of which leads to neuropsychiatric disorders. Synaptic function of AMPA receptors is tightly controlled by a protein group called transmembrane AMPAR regulatory proteins (TARPs). TARP γ-8 (also known as CACNG8) preferentially expresses in the hippocampus, cortex and subcortical regions that are critical for emotion generation indicating its association with psychiatric disorders. Here, we identified rs10420324 (T/G), a SNP located in the human CACNG8 gene, regulated reporter gene expression in vitro and TARP γ-8 expression in the human brain. A guanine at the locus (rs10420324G) suppressed transcription likely through modulation of a local G-quadruplex DNA structure. Consistent with these observations, the frequency of rs10420324G was higher in patients with anti-social personality disorder (ASPD) than in controls, indicating that rs10420324G in CACNG8 is more voluntary for ASPD. We then characterized the behavior of TARP γ-8 knockout and heterozygous mice and found that consistent with ASPD patients who often exhibit impulsivity, aggression, risk taking, irresponsibility and callousness, a decreased γ-8 expression in mice displayed similar behaviors. Furthermore, we found that a decrease in TARP γ-8 expression impaired synaptic AMPAR functions in layer 2–3 pyramidal neurons of the prefrontal cortex, a brain region that inhibition leads to aggression, thus explaining, at least partially, the neuronal basis for the behavioral abnormality. Taken together, our study indicates that TARP γ-8 expression level is associated with ASPD, and that the TARP γ-8 knockout mouse is a valuable animal model for studying this psychiatric disease.


2009 ◽  
Vol 37 (6) ◽  
pp. 1364-1368 ◽  
Author(s):  
Peter R. Moult ◽  
Jenni Harvey

It is well established that leptin is a circulating hormone that enters the brain and regulates food intake and body weight via its hypothalamic actions. However, it is also known that leptin receptors are widely expressed in the CNS (central nervous system), and evidence is accumulating that leptin modulates many neuronal functions. In particular, recent studies have indicated that leptin plays an important role in the regulation of hippocampal synaptic plasticity. Indeed leptin-insensitive rodents display impairments in hippocampal synaptic plasticity and defects in spatial memory tasks. We have also shown that leptin facilitates the induction of hippocampal LTP (long-term potentiation) via enhancing NMDA (N-methyl-D-aspartate) receptor function and that leptin has the ability to evoke a novel form of NMDA receptor-dependent LTD (long-term depression). In addition, leptin promotes rapid alterations in hippocampal dendritic morphology and synaptic density, which are likely to contribute to the effects of this hormone on excitatory synaptic strength. Recent studies have demonstrated that trafficking of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptors is pivotal for activity-dependent hippocampal synaptic plasticity. However, little is known about how AMPA receptor trafficking processes are regulated by hormonal systems. In the present paper, we discuss evidence that leptin rapidly alters the trafficking of AMPA receptors to and away from hippocampal CA1 synapses. The impact of these leptin-driven changes on hippocampal excitatory synaptic function are discussed.


2021 ◽  
Vol 7 (34) ◽  
pp. eabf3126
Author(s):  
Austin M. Ramsey ◽  
Ai-Hui Tang ◽  
Tara A. LeGates ◽  
Xu-Zhuo Gou ◽  
Beatrice E. Carbone ◽  
...  

Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.


Sign in / Sign up

Export Citation Format

Share Document