scholarly journals SNP rs10420324 in the AMPA receptor auxiliary subunit TARP γ-8 regulates the susceptibility to antisocial personality disorder

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shi-Xiao Peng ◽  
Yue-Ying Wang ◽  
Min Zhang ◽  
Yan-Yu Zang ◽  
Dan Wu ◽  
...  

AbstractIn the brain, AMPA receptors mediate fast excitatory neurotransmission, the dysfunction of which leads to neuropsychiatric disorders. Synaptic function of AMPA receptors is tightly controlled by a protein group called transmembrane AMPAR regulatory proteins (TARPs). TARP γ-8 (also known as CACNG8) preferentially expresses in the hippocampus, cortex and subcortical regions that are critical for emotion generation indicating its association with psychiatric disorders. Here, we identified rs10420324 (T/G), a SNP located in the human CACNG8 gene, regulated reporter gene expression in vitro and TARP γ-8 expression in the human brain. A guanine at the locus (rs10420324G) suppressed transcription likely through modulation of a local G-quadruplex DNA structure. Consistent with these observations, the frequency of rs10420324G was higher in patients with anti-social personality disorder (ASPD) than in controls, indicating that rs10420324G in CACNG8 is more voluntary for ASPD. We then characterized the behavior of TARP γ-8 knockout and heterozygous mice and found that consistent with ASPD patients who often exhibit impulsivity, aggression, risk taking, irresponsibility and callousness, a decreased γ-8 expression in mice displayed similar behaviors. Furthermore, we found that a decrease in TARP γ-8 expression impaired synaptic AMPAR functions in layer 2–3 pyramidal neurons of the prefrontal cortex, a brain region that inhibition leads to aggression, thus explaining, at least partially, the neuronal basis for the behavioral abnormality. Taken together, our study indicates that TARP γ-8 expression level is associated with ASPD, and that the TARP γ-8 knockout mouse is a valuable animal model for studying this psychiatric disease.

2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Maria Casas ◽  
Rut Fadó ◽  
José Luis Domínguez ◽  
Aina Roig ◽  
Moena Kaku ◽  
...  

Carnitine palmitoyltransferase 1C (CPT1C) is a sensor of malonyl-CoA and is located in the ER of neurons. AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the brain and play a key role in synaptic plasticity. In the present study, we demonstrate across different metabolic stress conditions that modulate malonyl-CoA levels in cortical neurons that CPT1C regulates the trafficking of the major AMPAR subunit, GluA1, through the phosphatidyl-inositol-4-phosphate (PI(4)P) phosphatase SAC1. In normal conditions, CPT1C down-regulates SAC1 catalytic activity, allowing efficient GluA1 trafficking to the plasma membrane. However, under low malonyl-CoA levels, such as during glucose depletion, CPT1C-dependent inhibition of SAC1 is released, facilitating SAC1’s translocation to ER-TGN contact sites to decrease TGN PI(4)P pools and trigger GluA1 retention at the TGN. Results reveal that GluA1 trafficking is regulated by CPT1C sensing of malonyl-CoA and provide the first report of a SAC1 inhibitor. Moreover, they shed light on how nutrients can affect synaptic function and cognition.


2016 ◽  
Vol 113 (19) ◽  
pp. E2695-E2704 ◽  
Author(s):  
Mengping Wei ◽  
Jian Zhang ◽  
Moye Jia ◽  
Chaojuan Yang ◽  
Yunlong Pan ◽  
...  

In the brain, AMPA-type glutamate receptors are major postsynaptic receptors at excitatory synapses that mediate fast neurotransmission and synaptic plasticity. α/β-Hydrolase domain-containing 6 (ABHD6), a monoacylglycerol lipase, was previously found to be a component of AMPA receptor macromolecular complexes, but its physiological significance in the function of AMPA receptors (AMPARs) has remained unclear. The present study shows that overexpression of ABHD6 in neurons drastically reduced excitatory neurotransmission mediated by AMPA but not by NMDA receptors at excitatory synapses. Inactivation of ABHD6 expression in neurons by either CRISPR/Cas9 or shRNA knockdown methods significantly increased excitatory neurotransmission at excitatory synapses. Interestingly, overexpression of ABHD6 reduced glutamate-induced currents and the surface expression of GluA1 in HEK293T cells expressing GluA1 and stargazin, suggesting a direct functional interaction between these two proteins. The C-terminal tail of GluA1 was required for the binding between of ABHD6 and GluA1. Mutagenesis analysis revealed a GFCLIPQ sequence in the GluA1 C terminus that was essential for the inhibitory effect of ABHD6. The hydrolase activity of ABHD6 was not required for the effects of ABHD6 on AMPAR function in either neurons or transfected HEK293T cells. Thus, these findings reveal a novel and unexpected mechanism governing AMPAR trafficking at synapses through ABHD6.


2014 ◽  
Vol 112 (4) ◽  
pp. 1214-1219 ◽  
Author(s):  
Wei Chou Tseng ◽  
Paul M. Jenkins ◽  
Masashi Tanaka ◽  
Richard Mooney ◽  
Vann Bennett

GABAA-receptor-based interneuron circuitry is essential for higher order function of the human nervous system and is implicated in schizophrenia, depression, anxiety disorders, and autism. Here we demonstrate that giant ankyrin-G (480-kDa ankyrin-G) promotes stability of somatodendritic GABAergic synapses in vitro and in vivo. Moreover, giant ankyrin-G forms developmentally regulated and cell-type-specific micron-scale domains within extrasynaptic somatodendritic plasma membranes of pyramidal neurons. We further find that giant ankyrin-G promotes GABAergic synapse stability through opposing endocytosis of GABAA receptors, and requires a newly described interaction with GABARAP, a GABAA receptor-associated protein. We thus present a new mechanism for stabilization of GABAergic interneuron synapses and micron-scale organization of extrasynaptic membrane that provides a rationale for studies linking ankyrin-G genetic variation with psychiatric disease and abnormal neurodevelopment.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Esther Castillo-Gómez ◽  
Emilio Varea ◽  
José Miguel Blasco-Ibáñez ◽  
Carlos Crespo ◽  
Juan Nacher

Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found.


2020 ◽  
Vol 127 (11) ◽  
pp. 1547-1568
Author(s):  
Rhiannon V. McNeill ◽  
Georg C. Ziegler ◽  
Franziska Radtke ◽  
Matthias Nieberler ◽  
Klaus-Peter Lesch ◽  
...  

Abstract Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006–2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient’s own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.


2021 ◽  
Vol 14 (7) ◽  
pp. 659
Author(s):  
Juthamart Maneenet ◽  
Orawan Monthakantirat ◽  
Supawadee Daodee ◽  
Chantana Boonyarat ◽  
Yutthana Chotritthirong ◽  
...  

Major depressive disorder (MDD) is a common and debilitating psychiatric disease characterized by persistent low mood, lack of energy, hypoactivity, anhedonia, decreased libido, and impaired cognitive and social functions. However, the multifactorial etiology of MDD remains largely unknown due the complex interaction between genetics and environment involved. Kleeb Bua Daeng (KBD) is a Thai traditional herbal formula that has been used to promote brain health. It consists of a 1:1:1 ratio of the aerial part of Centella asiatica, Piper nigrum fruit, and the petals of Nelumbo nucifera. According to the pharmacological activities of the individual medicinal plants, KBD has good potential as a treatment for MDD. The present study investigated the antidepressant activity of KBD in an unpredictable chronic mild stress (UCMS) mouse model. Daily administration of KBD to UCMS mice ameliorated both anhedonia, by increasing 2% sucrose intake, and hopeless behavior, by reducing immobility times in the forced swimming test (FST) and tail suspension test (TST) without any effect on locomotor activity. The mechanism of KBD activity was multi-modal. KBD promoted neurogenesis by upregulation of brain-derived neurotrophic factor (BDNF) and cyclic AMP-responsive element binding (CREB) mRNA expression in the frontal cortex and hippocampus. Daily treatment with KBD significantly reversed UCMS-induced HPA axis dysregulation by upregulating the glucocorticoid receptor (GR) while downregulating serum- and glucocorticoid-inducible kinase 1 (SGK1) and FK506 binding protein 5 (FKBP5) mRNA expression. KBD treatment also normalized proinflammatory cytokine expression including tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-1β and IL-6. KBD and its component extracts also exhibited an inhibitory effect in vitro on monoamine oxidase (MAO) A and B. The multiple antidepressant actions of KBD emphasize its potential as an effective, novel treatment for MDD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raul Loera-Valencia ◽  
Erika Vazquez-Juarez ◽  
Alberto Muñoz ◽  
Gorka Gerenu ◽  
Marta Gómez-Galán ◽  
...  

AbstractAlterations in brain cholesterol homeostasis in midlife are correlated with a higher risk of developing Alzheimer’s disease (AD). However, global cholesterol-lowering therapies have yielded mixed results when it comes to slowing down or preventing cognitive decline in AD. We used the transgenic mouse model Cyp27Tg, with systemically high levels of 27-hydroxycholesterol (27-OH) to examine long-term potentiation (LTP) in the hippocampal CA1 region, combined with dendritic spine reconstruction of CA1 pyramidal neurons to detect morphological and functional synaptic alterations induced by 27-OH high levels. Our results show that elevated 27-OH levels lead to enhanced LTP in the Schaffer collateral-CA1 synapses. This increase is correlated with abnormally large dendritic spines in the stratum radiatum. Using immunohistochemistry for synaptopodin (actin-binding protein involved in the recruitment of the spine apparatus), we found a significantly higher density of synaptopodin-positive puncta in CA1 in Cyp27Tg mice. We hypothesize that high 27-OH levels alter synaptic potentiation and could lead to dysfunction of fine-tuned processing of information in hippocampal circuits resulting in cognitive impairment. We suggest that these alterations could be detrimental for synaptic function and cognition later in life, representing a potential mechanism by which hypercholesterolemia could lead to alterations in memory function in neurodegenerative diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Freddy Zhang ◽  
Benjamin Rein ◽  
Ping Zhong ◽  
Treefa Shwani ◽  
Megan Conrow-Graham ◽  
...  

AbstractAutism spectrum disorder (ASD) is a lifelong developmental disorder characterized by social deficits and other behavioral abnormalities. Dysregulation of epigenetic processes, such as histone modifications and chromatin remodeling, have been implicated in ASD pathology, and provides a promising therapeutic target for ASD. Haploinsufficiency of the SHANK3 gene is causally linked to ASD, so adult (3–5 months old) Shank3-deficient male mice were used in this drug discovery study. We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective. Another behavioral abnormality in adult Shank3-deficient male mice, heightened aggression, was also alleviated by administration of the dual drugs. Furthermore, Romidepsin/GSK-LSD1 treatment significantly increased transcriptional levels of NMDA receptor subunits in prefrontal cortex (PFC) of adult Shank3-deficient mice, resulting in elevated synaptic expression of NMDA receptors and the restoration of NMDAR synaptic function in PFC pyramidal neurons. These results have offered a novel pharmacological intervention strategy for ASD beyond early developmental periods.


2008 ◽  
Vol 99 (6) ◽  
pp. 2985-2997 ◽  
Author(s):  
Kay Thurley ◽  
Walter Senn ◽  
Hans-Rudolf Lüscher

Dopaminergic modulation of prefrontal cortical activity is known to affect cognitive functions like working memory. Little consensus on the role of dopamine modulation has been achieved, however, in part because quantities directly relating to the neuronal substrate of working memory are difficult to measure. Here we show that dopamine increases the gain of the frequency-current relationship of layer 5 pyramidal neurons in vitro in response to noisy input currents. The gain increase could be attributed to a reduction of the slow afterhyperpolarization by dopamine. Dopamine also increases neuronal excitability by shifting the input-output functions to lower inputs. The modulation of these response properties is mainly mediated by D1 receptors. Integrate-and-fire neurons were fitted to the experimentally recorded input-output functions and recurrently connected in a model network. The gain increase induced by dopamine application facilitated and stabilized persistent activity in this network. The results support the hypothesis that catecholamines increase the neuronal gain and suggest that dopamine improves working memory via gain modulation.


Sign in / Sign up

Export Citation Format

Share Document