scholarly journals Pedotransfer functions to estimate soil water content at field capacity and permanent wilting point in hot Arid Western India

2018 ◽  
Vol 127 (3) ◽  
Author(s):  
Priyabrata Santra ◽  
Mahesh Kumar ◽  
R N Kumawat ◽  
D K Painuli ◽  
K M Hati ◽  
...  
2020 ◽  
Vol 3 (1) ◽  
pp. 23-26
Author(s):  
Ingri Dayana ◽  
Bandi Hermawan ◽  
Yudhi Harini Bertham ◽  
Dwi Wahyuni Ganefianti

Soil water availability to the plants is a range of water content between the field capacity and the permanent wilting point (PWP) conditions. The PWP is defined as the lower limit of soil water content that the plant can extract water from the soil as indicated by the symptoms of wilting plants. This is because plant roots are unable to penetrate the soil micropores that contain the water.  The study aims to analyze the effects of arbuscular mycorrhizal fungi (AMF) and compost in enhancing soil water absorption by the plant when the water content is close to the permanent wilting point. Four doses of AMF (0, 5, 10 and 15 g.plant-1) and three doses of coffee pulp-made compost (0, 5 and 10 ton.ha-1) were arranged according to a randomized complete block design with three replicates. Results showed that the application of AMF significantly enabled the plant to improve water uptake when the soil water content was about at the permanent wilting point conditions. The AMF addition of 15 g.plant-1 significantly prolonged the growing period of chili to wither and the plant showed the wilting symptoms at the soil water content of 5 to 7% lower than the no-AMF plants. Improved water uptake under water stress conditions was attributed to increases in the root colonization by AMF.


2018 ◽  
Vol 44 (2) ◽  
pp. 697 ◽  
Author(s):  
P. Pérez-Cutillas ◽  
G.G. Barberá ◽  
C. Conesa-García

This study compares two methods for the estimation of hydraulic properties of the soil at the regional scale. Soil water content (θ) values was estimated at two fixed soil matric potential values), associated with the field capacity (θfc) and wilting point (θwp). The first method is carried out directly using (θ) values of analytical determinations, by modeling them as a function of environmental variables. The second method employed texture and organic matter (OM) information to obtain (θ) values by pedotransfer functions (PTFs). The comparison of both methods allows evaluating the effect of the textures and OM, of which a significant effect of these variables is produced, suggested that there is a considerable level of consistency between the two methods, despite some differences induced by coarse textures (sand) and OM.


2019 ◽  
Vol 71 (3) ◽  
pp. 392-398 ◽  
Author(s):  
Chong Chen ◽  
Hu Zhou ◽  
Jianying Shang ◽  
Kelin Hu ◽  
Tusheng Ren

2012 ◽  
Vol 76 (3) ◽  
pp. 829-844 ◽  
Author(s):  
Feng Pan ◽  
Yakov Pachepsky ◽  
Diederik Jacques ◽  
Andrey Guber ◽  
Robert L. Hill

Author(s):  
MUHAMMAD ASLAM ALI ◽  
SANJIT CHANDRA BARMAN ◽  
MD. ASHRAFUL ISLAM KHAN ◽  
MD. BADIUZZAMAN KHAN ◽  
HAFSA JAHAN HIYA

Climate change and water scarcity may badly affect existing rice production system in Bangladesh. With a view to sustain rice productivity and mitigate yield scaled CH4 emission in the changing climatic conditions, a pot experiment was conducted under different soil water contents, biochar and silicate amendments with inorganic fertilization (NPKS). In this regard, 12 treatments combinations of biochar, silicate and NPKS fertilizer along with continuous standing water (CSW), soil saturation water content and field capacity (100% and 50%) moisture levels were arranged into rice planted potted soils. Gas samples were collected from rice planted pots through Closed Chamber technique and analyzed by Gas Chromatograph. This study revealed that seasonal CH4 emissions were suppressed through integrated biochar and silicate amendments with NPKS fertilizer (50–75% of the recommended doze), while increased rice yield significantly at different soil water contents. Biochar and silicate amendments with NPKS fertilizer (50% of the recommended doze) increased rice grain yield by 10.9%, 18.1%, 13.0% and 14.2%, while decreased seasonal CH4 emissions by 22.8%, 20.9%, 23.3% and 24.3% at continuous standing water level (CSW) (T9), at saturated soil water content (T10), at 100% field capacity soil water content (T11) and at 50% field capacity soil water content (T12), respectively. Soil porosity, soil redox status, SOC and free iron oxide contents were improved with biochar and silicate amendments. Furthermore, rice root oxidation activity (ROA) was found more dominant in water stress condition compared to flooded and saturated soil water contents, which ultimately reduced seasonal CH4 emissions as well as yield scaled CH4 emission. Conclusively, soil amendments with biochar and silicate fertilizer may be a rational practice to reduce the demand for inorganic fertilization and mitigate CH4 emissions during rice cultivation under water stress drought conditions.


2002 ◽  
Vol 82 (4) ◽  
pp. 855-859 ◽  
Author(s):  
M. L. Leblanc ◽  
D. C. Cloutier ◽  
C. Hamel

A 2-year field study was conducted in corn to determine the influence of rainfall, irrigation and soil water content on common lambsquarters and barnyardgrass emergence. Rainfall or irrigation had no influence on the final weed density and little on the pattern of weed emergence because the soil water content was at or greater than field capacity during the main weed emergence period. Irrigation may hasten the first weed emergence by warming the soil when temperature is limiting for germination. In southwestern Quebec, temperature appears to be the most important factor regulating germination in the spring since soil moisture is normally at field capacity for a long period, in part because of the melting of snow. Key words: Irrigation, weed emergence, soil moisture


2019 ◽  
Vol 62 (2) ◽  
pp. 289-301
Author(s):  
Amjad T. Assi ◽  
Rabi H. Mohtar ◽  
Erik F. Braudeau ◽  
Cristine L. S. Morgan

Abstract. The purpose of this study was to evaluate the use of the pedostructure concept to determine the soil available water capacity, specifically the field capacity (FC). Pedostructure describes the soil aggregate structure and its thermodynamic interaction with water. Specifically, this work compared the calculation of soil water-holding properties based on the pedostructure concept with other standard methods for determining FC and permanent wilting point (PWP). The standard methods evaluated were the FAO texture estimate (FAO method), the Saxton-Rawls pedotransfer functions (PTFs method), and the water content at predefined soil suction (330 and 15,000 hPa) as measured with a pressure plate apparatus (PP method). Additionally, two pedostructure methods were assessed: the thermodynamic water retention curve (TWRC method) and the thermodynamic pedostructure (TPC method). Undisturbed loamy fine sand soil from a field in Millican, Texas, was analyzed at both the Ap and E horizons. The results showed that the estimated water content at FC and PWP for the three standard methods and for the TWRC method were in relative agreement. However, the TPC method used characteristic transition points in the modeled contents of different water pools in the soil aggregate and was higher for the Ap horizon, but in agreement with the other methods for the E horizon. For example, for the Ap horizon of the soil analyzed in this study, the FC estimated with the standard and TWRC methods ranged from 0.073 to 0.150 m3H2O m-3soil, while the TPC method estimate was 0.221 m3H2O m-3soil. Overall, the different methods showed good agreement in estimating the available water; however, the results also showed some variations in these estimates. It is clear that the TPC method has advantages over the other methods in considering the soil aggregate structure and modeling the soil water content within the aggregate structure. The thermodynamic nature of the TPC method enabled the use of both the soil shrinkage curve and the water retention curve in a weakly structured soil. It is expected that the TPC method would provide more comprehensive advances in understanding the soil water-holding properties of structured soils with higher clay contents. Keywords: Available water, Field capacity, Pedostructure, Pedotransfer functions, Permanent wilting point.


2013 ◽  
Vol 33 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Adão W. P. Evangelista ◽  
Luiz A. Lima ◽  
Antônio C. da Silva ◽  
Carla de P. Martins ◽  
Moisés S. Ribeiro

Irrigation management can be established, considering the soil water potential, as the limiting factor for plant growth, assuming the soil water content between the field capacity and the permanent wilting point as available water for crops. Thus, the aim of this study was to establish the soil water potential interval during four different phenological phases of coffee irrigated by center pivot. The experiment was set at the experimental area of the Engineering Department at the Federal University of Lavras, in Brazil. The coffee variety planted is designated as Rubi, planted 0.8 meters apart, with rows spaced 3.5 meters apart. The treatments corresponded to the water depths applied based on different percentages of Kc and reference evapotranspiration (ET0) values. Sensors were used to measure the soil water potential interval, installed 25 centimeters depth. In order to compare the results, it was considered as the best matric potential the one that was balanced with the soil water content that resulted in the largest coffee productivity. Based on the obtained results, we verified that in the phases of fruit expansion and ripening, the best results were obtained, before the irrigations, when the soil water potential values reached -35 and -38 kPa, respectively. And in the flowering, small green and fruit expansion phases, when the values reached -31 and -32 kPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document