Intersex (ix) mutations of Drosophila melanogaster cause nonrandom cell death in genital disc and can induce tumours in genitals in response to decapentaplegic (dpp disk ) mutations

2015 ◽  
Vol 94 (2) ◽  
pp. 207-220 ◽  
Author(s):  
R. N. CHATTERJEE ◽  
P. CHATTERJEE ◽  
S. KUTHE ◽  
M. ACHARYYA-ARI ◽  
R. CHATTERJEE
2010 ◽  
Vol 73 (3) ◽  
pp. 119-127 ◽  
Author(s):  
Akira Sakurai ◽  
Yoshiro Nakano ◽  
Masayuki Koganezawa ◽  
Daisuke Yamamoto

Development ◽  
1985 ◽  
Vol 87 (1) ◽  
pp. 99-114
Author(s):  
Alfonso Martinez-Arias

The mutant fused (1–59·5) belongs to a class of lethal mutations in Drosophila melanogaster that produce pattern duplications in every segment of the mature embryo. A study of the embryonic development of fused'− embryos derived horn fused− mothers shows that extensive cell death occurs early in development. This cell death accounts for the smaller size of the segments in fused− embryos. The pattern duplication observed is, probably, a secondary consequence of the pattern deletion.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 247-256
Author(s):  
Thomas G. Wilson

A new allele of the suppressor of forked [su(f)] mutation in Drosophila melanogaster has been found and designated 1(1)su(f)ts76a. It is temperature-sensitive for suppression of forked (f) and has additional temperature-sensitive phenotypes of lethality, female sterility, and abnormal bristle formation at 29 °C. It closely resembles two other conditional alleles of su(f), 1(1)su(f)ts67g and 1(1)ts726. Female sterility at 29 °C is characterized by both disorganized egg chambers in the ovarioles and also chorion-deficient oocytes. Both of these abnormalities may be the result of premature follicle cell death. The observations on 1(1)su(f)ts76a are consistent with the proposal that the similar allele, 1(1)ts726, is a cell-lethal mutation specifically affecting mitotically active cells.


2012 ◽  
Vol 196 (4) ◽  
pp. 513-527 ◽  
Author(s):  
Anat Florentin ◽  
Eli Arama

Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.


Sign in / Sign up

Export Citation Format

Share Document