scholarly journals Caspase levels and execution efficiencies determine the apoptotic potential of the cell

2012 ◽  
Vol 196 (4) ◽  
pp. 513-527 ◽  
Author(s):  
Anat Florentin ◽  
Eli Arama

Essentially, all metazoan cells can undergo apoptosis, but some cells are more sensitive than others to apoptotic stimuli. To date, it is unclear what determines the apoptotic potential of the cell. We set up an in vivo system for monitoring and comparing the activity levels of the two main effector caspases in Drosophila melanogaster, Drice and Dcp-1. Both caspases were activated by the apoptosome after irradiation. However, whereas each caspase alone could induce apoptosis, Drice was a more effective inducer of apoptosis than Dcp-1, which instead had a role in establishing the rate of cell death. These functional differences are attributed to their intrinsic properties rather than merely their tissue specificities. Significantly, the levels of the procaspases are directly proportional to their activity levels and play a key role in determining the cell’s sensitivity to apoptosis. Finally, we provide evidence for the existence of a cellular execution threshold of caspase activity, which must be reached to induce apoptosis.

2008 ◽  
Vol 182 (6) ◽  
pp. 1127-1139 ◽  
Author(s):  
Ying-Chen Claire Hou ◽  
Suganthi Chittaranjan ◽  
Sharon González Barbosa ◽  
Kimberly McCall ◽  
Sharon M. Gorski

A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death–related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes—death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53—as well as Ras–Raf–mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo.


2007 ◽  
Vol 403 (1) ◽  
pp. 89-95 ◽  
Author(s):  
Robert Wattiaux ◽  
Simone Wattiaux-De Coninck ◽  
Jacqueline Thirion ◽  
Mańe-Christine Gasingirwa ◽  
Michel Jadot

A number of studies, mostly performed ex vivo, suggest that lysosomes are involved in apoptosis as a result of a release of their cathepsins into the cytosol. These enzymes could then contribute to the permeabilization of the outer mitochondrial membrane; they could also activate effector caspases. The present study aims at testing whether the membrane of liver lysosomes is disrupted during Fas-mediated cell death of hepatocytes in vivo, a process implicated in several liver pathologies. Apoptosis was induced by injecting mice with aFas (anti-Fas antibody). The state of lysosomes was assessed by determining the proportion of lysosomal enzymes (β-galactosidase, β-glucuronidase, cathepsin C and cathepsin B) present in homogenate supernatants, devoid of intact lysosomes, and by analysing the behaviour in differential and isopycnic centrifugation of β-galactosidase. Apoptosis was monitored by measuring caspase 3 activity (DEVDase) and the release of sulfite cytochrome c reductase, an enzyme located in the mitochondrial intermembrane space. Results show that an injection of 10 μg of aFas causes a rapid and large increase in DEVDase activity and in unsedimentable sulfite cytochrome c reductase. This modifies neither the proportion of unsedimentable lysosomal enzyme in the homogenates nor the behaviour of lysosomes in centrifugation. Experiments performed with a lower dose of aFas (5 μg) indicate that unsedimentable lysosomal hydrolase activity increases in the homogenate after injection but with a marked delay with respect to the increase in DEVDase activity and in unsedimentable sulfite cytochrome c reductase. Comparative experiments ex vivo performed with Jurkat cells show an increase in unsedimentable lysosomal hydrolases, but much later than caspase 3 activation, and a release of dipeptidyl peptidase III and DEVDase into culture medium. It is proposed that the weakening of lysosomes observed after aFas treatment in vivo and ex vivo results from a necrotic process that takes place late after initiation of apoptosis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2951-2951
Author(s):  
Yuri Kamitsuji ◽  
Junya Kuroda ◽  
Shinya Kimura ◽  
Ken-ichiro Watanabe ◽  
Eishi Ashihara ◽  
...  

Abstract The blockade of Bcr-Abl signaling suppresses cellular growth and induces cell death in Bcr-Abl+ cells. While they are known to promote caspase-mediated apoptosis, it remains unclear whether caspase-independent cell death-inducing mechanisms are also triggered. Here we assessed the regulatory mechanisms for cellular survival and death of Bcr-Abl+ leukemias more precisely, using a novel Bcr-Abl tyrosine kinase inhibitor, INNO-406 (formerly NS-187) which is more selective and 25-55-fold more active than imatinib (Kimura S, Blood 2005), in four CML-derived Bcr-Abl+ cell lines (K562, KT-1, BV173 and MYL), Ba/F3 harboring wild type bcr-abl (Ba/F3/wt bcr-abl), and in vivo CML mouse model. INNO-406 induces apoptosis in all lines examined, as were demonstrated by typical apoptotic morphology, loss of mitochondrial outer membrane potential (reduction of DiOC6 uptake), increase of cells in subG1 fraction by propidium iodide (PI) staining, DNA fragmentation and caspase-3 activation. However, when we inhibit caspase activity by zVAD-fmk (zVAD), a pan-caspase inhibitor, two modes of cell death execution were observed. In K562, KT-1 and BV173 cells treated with INNO-406, zVAD almost completely prevented apoptosis (i.e. showing atypical feature for apoptosis, no DNA fragmentation and no accumulation of subG1 fraction), with cell death resulting from morphologically non-apoptotic, so-called caspase-independent necrosis-like cell death (CIND). While, in MYL and Ba/F3/wt bcr-abl cells, despite the sufficient inhibition of caspases’ activity, the inhibition of the cell death by zVAD was only partial and these cell lines still underwent apoptosis (i.e. showing DNA fragmentation and the accumulation of subG1 population), suggesting the presence of alter cell death pathway which is caspase-independent apoptosis (CIA) in MYL and Ba/F3/wt bcr-abl. The propensity towards CIND or CIA in cells was strongly associated with cellular dependency on apoptosome-mediated caspase activity, that is CIND with a high apoptosome activity potential while CIA with low. Freshly isolated leukemic cell samples from Bcr-Abl+ leukemia patients also had either low or high apoptosome activity potential. Moreover, cells undergoing CIND exhibited hallmarks of autophagy (i.e. the autophagosome formation, punctate formations of LC3 and the accumulation of LC3-II isoform), suggested the participation of autophagy in response to Bcr-Abl blockade. Inhibition of autophagy with chloroquine enhanced INNO-406-induced cell death, which indicates that the autophagic response of the tumor cells is protective. While, in vivo CML model, INNO-406 treatment increased apoptotic cells regardless of the caspase-3 activation, further implicating the involvement of caspase-independent cell death regulatory pathway in vivo in primary Bcr-Abl+ leukemic cells. These findings suggest new insights into the biology and therapy of Bcr-Abl+ leukemias.


2021 ◽  
Author(s):  
Amrita Mukherjee ◽  
Sinziana Pop ◽  
Shu Kondo ◽  
Darren W Williams

AbstractCaspases are best known for their role in programmed cell death but have also been found to be important in several non-apoptotic phenomena such as cell fate specification, cell migration and terminal differentiation. The dynamics of such sub-lethal caspase events and the molecular mechanisms regulating them are still largely unknown. As more tools for visualizing and manipulating caspase activation in vivo become available, greater insights into this biology are being made. Using a new and sensitive in vivo effector caspase probe, called SR4VH, we demonstrate that effector caspases are activated in pruning sensory neurons earlier than previously thought and that the level of caspase activation in these neurons is consistently lower than in neurons undergoing cell death. We reveal that Grim and Reaper, two of the four pro-apoptotic RHG proteins, are required for sensory neuron pruning and that disrupting the dynamics of the mitochondrial network prevents effector caspase activation in both pruning and dying sensory neurons. Overall, our findings demonstrate that a sublethal deployment of the ‘apoptotic machinery’ is critical for remodelling dendrites and also reveal a direct link between mitochondria and sensory neuron cell death in vivo.


1999 ◽  
Vol 144 (4) ◽  
pp. 701-710 ◽  
Author(s):  
Johnson Varkey ◽  
Po Chen ◽  
Ronald Jemmerson ◽  
John M. Abrams

Drosophila affords a genetically well-defined system to study apoptosis in vivo. It offers a powerful extension to in vitro models that have implicated a requirement for cytochrome c in caspase activation and apoptosis. We found that an overt alteration in cytochrome c anticipates programmed cell death (PCD) in Drosophila tissues, occurring at a time that considerably precedes other known indicators of apoptosis. The altered configuration is manifested by display of an otherwise hidden epitope and occurs without release of the protein into the cytosol. Conditional expression of the Drosophila death activators, reaper or grim, provoked apoptogenic cytochrome c display and, surprisingly, caspase activity was necessary and sufficient to induce this alteration. In cell-free studies, cytosolic caspase activation was triggered by mitochondria from apoptotic cells but identical preparations from healthy cells were inactive. Our observations provide compelling validation of an early role for altered cytochrome c in PCD and suggest propagation of apoptotic physiology through reciprocal, feed-forward amplification involving cytochrome c and caspases.


2019 ◽  
Vol 116 (15) ◽  
pp. 7431-7438 ◽  
Author(s):  
Saikat Boliar ◽  
David W. Gludish ◽  
Kondwani C. Jambo ◽  
Raphael Kamng’ona ◽  
Leonard Mvaya ◽  
...  

Long noncoding RNAs (lncRNAs) impart significant regulatory functions in a diverse array of biological pathways and manipulation of these RNAs provides an important avenue to modulate such pathways, particularly in disease. Our knowledge about lncRNAs’ role in determination of cellular fate during HIV-1 infection remains sparse. Here, we have identified the impact of the lncRNA SAF in regulating apoptotic effector caspases in macrophages, a long-lived cellular reservoir of HIV-1, that are largely immune to virus-induced cell death. Expression of SAF is significantly up-regulated in HIV-1–infected human monocyte-derived macrophages (MDM) compared with bystander and virus-nonexposed cells. A similar enhancement in SAF RNA expression is also detected in the HIV-1–infected airway macrophages obtained by bronchoalveolar lavage of HIV-1–infected individuals. Down-regulation of SAF with siRNA treatment increases caspase-3/7 activity levels in virus-infected MDMs. This induction of apoptotic caspases occurs exclusively in HIV-1–infected macrophages and not in bystander cells, leading to a significant reduction in HIV-1 replication and overall viral burden in the macrophage culture. This study identifies targeting of the lncRNA SAF as a potential means to specifically induce cell death in HIV-1–infected macrophages.


2017 ◽  
Author(s):  
P. J. Nicholls ◽  
Thomas F. Pack ◽  
Nikhil M. Urs ◽  
Sunil Kumar ◽  
Gabor Turu ◽  
...  

AbstractThe protease caspase-3 is a key mediator of apoptotic programmed cell death. But weak or transient caspase activity can contribute to neuronal differentiation, axonal pathfinding, and synaptic long-term depression. Despite the importance of sublethal, or nonapoptotic, caspase activity in neurodevelopment and neural plasticity, there has been no simple method for mapping and quantifying nonapoptotic caspase activity in rodent brains. We therefore generated a transgenic mouse expressing a highly sensitive and specific fluorescent reporter of caspase activity, with peak signal localized to the nucleus. Surprisingly, nonapoptotic caspase activity was prevalent in healthy adult brains and influenced neuronal functional connectivity. We quantified the relationship between caspase activity and cell firing and morphology. We also notably observed a sex-specific persistent elevation in amygdalar caspase activity in females after restraint stress. This simple in vivo caspase activity reporter will facilitate systems-level studies of apoptotic and nonapoptotic phenomena in behavioral and pathological models.Significance StatementCaspase-3 is an enzyme that can cause cell death when highly active but can also perform important cellular functions, such as maturation and structural changes, when only weakly or transiently active. Despite the importance of this nonlethal type of caspase activity, there is no straightforward method to measure it in live rodents. We therefore developed mice that have a fluorescent reporter that is sensitive enough to detect nonlethal caspase activity. Surprisingly, we found that weak caspase activity is widespread in healthy brains and influences the synchrony of neuronal firing across different brain regions. We also observed increased caspase activity in female mice after severe stress. This simple, live-animal caspase activity reporter can subserve multiple applications in behavior and pathology research.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jonathon Alexis Coates ◽  
Elliot Brooks ◽  
Amy Louise Brittle ◽  
Emma Louise Armitage ◽  
Martin Peter Zeidler ◽  
...  

Vertebrate macrophages are a highly heterogeneous cell population, but whileDrosophilablood is dominated by a macrophage-like lineage (plasmatocytes), until very recently these cells were considered to represent a homogeneous population. Here, we present our identification of enhancer elements labelling plasmatocyte subpopulations, which vary in abundance across development. These subpopulations exhibit functional differences compared to the overall population, including more potent injury responses and differential localisation and dynamics in pupae and adults. Our enhancer analysis identified candidate genes regulating plasmatocyte behaviour: pan-plasmatocyte expression of one such gene (Calnexin14D) improves wound responses, causing the overall population to resemble more closely the subpopulation marked by theCalnexin14D-associated enhancer. Finally, we show that exposure to increased levels of apoptotic cell death modulates subpopulation cell numbers. Taken together this demonstrates macrophage heterogeneity inDrosophila, identifies mechanisms involved in subpopulation specification and function and facilitates the use ofDrosophilato study macrophage heterogeneity in vivo.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii97-ii98
Author(s):  
Nikhil Wilkins ◽  
Timothy Stephens ◽  
Laura Felix

Abstract BACKGROUND Apoptosis is a programmed cell death mechanism where cells respond to internal or external stimuli by initiating a cascade of events and enzymes leading to cell death. One of the hallmarks of cancer is the ability to resist apoptotic stimuli. Removing resistances to apoptosis can result in the death of these tumor cells. METHOD The GBM cell line Gli36ΔEGFR was used to determine Caspase activity and BXQ-350 cytotoxicity. Cells were treated with 9uM to 30uM BXQ-350 in triplicate and incubated for 24 hours at 37oC. Promega’s Caspase-Glo 9 or Caspase-Glo 3/7 reagent was added to each well of a plate and was incubated at room temperature in the dark for 3 hours then luminescence was read. The parallel cytotoxic assay was run under the same conditions except Roche’s MTT labeling reagent was added to each well after 24 hours and the plate was incubated at 370C for 4 hours. Solubilization solution was added to each well, the plate was incubated overnight then absorbance was read. The GBM cell line U87 MG was used to determine lysosomal targeting by treating with 10uM BXQ-350 and incubated at 37oC overnight. They were stained with anti-SapC (RFP) and anti-LAMP1 (GFP) antibodies and images were taken. RESULT BXQ-350 mediated cell death is correlated with a rise in Caspase 3, Caspase 7 and Caspase 9 activity. The caspase activity levels did not rise until after BXQ-350 passed its IC50 and stayed elevated. Caspases 3/7 levels showed higher activity compared to untreated than Caspase 9. BXQ-350 was seen to colocalize to LAMP1, a lysosomal membrane protein. CONCLUSION BXQ-350 tracks to the lysosomal membrane where it initiates a cascade of enzymes necessary to cause apoptosis. Caspases 3/7 are the effector caspases that complete the apoptotic process removing a major barrier to fight cancer.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document