Comparison of integrated whole-body PET/MR and PET/CT: Is PET/MR alternative to PET/CT in routine clinical oncology?

2015 ◽  
Vol 30 (3) ◽  
pp. 225-233 ◽  
Author(s):  
Shirou Ishii ◽  
Daisuke Shimao ◽  
Takamitsu Hara ◽  
Masayuki Miyajima ◽  
Ken Kikuchi ◽  
...  
Keyword(s):  
2005 ◽  
Vol 44 (S 01) ◽  
pp. S51-S57 ◽  
Author(s):  
T. Beyer ◽  
G. Brix

Summary:Clinical studies demonstrate a gain in diagnostic accuracy by employing combined PET/CT instead of separate CT and PET imaging. However, whole-body PET/CT examinations result in a comparatively high radiation burden to patients and thus require a proper justification and optimization to avoid repeated exposure or over-exposure of patients. This review article summarizes relevant data concerning radiation exposure of patients resulting from the different components of a combined PET/CT examination and presents different imaging strategies that can help to balance the diagnostic needs and the radiation protection requirements. In addition various dose reduction measures are discussed, some of which can be adopted from CT practice, while others mandate modifications to the existing hardand software of PET/CT systems.


2020 ◽  
Author(s):  
H Kertesz ◽  
T Beyer ◽  
T Traub-Weidinger ◽  
J Cal-Gonzalez ◽  
M Hacker ◽  
...  
Keyword(s):  

e-Anatomy ◽  
2008 ◽  
Author(s):  
Antoine Micheau ◽  
Denis Hoa
Keyword(s):  

2018 ◽  
Vol 64 (6) ◽  
pp. 799-804
Author(s):  
Darya Ryzhkova ◽  
M. Poyda

Purpose: To study the diagnostic value of PET-CT with 68Ga-PSMA-11 in the diagnosis of a primary prostate cancer, preoperative staging, and the detection of recurrence of prostate cancer (PCa). Methods: 28 patients aged 64.7 ± 8.74 years were included. 10 patients primary prostate cancer, and 18 patients with biochemical recurrence of the disease after radical treatment were examined. All patients underwent PET-CT with 68Ga-PSMA-11 according the whole body protocol. Interpretation of images was performed visually and quantitatively by calculation of SUL max. Results: High focal or diffuse 68Ga-PSMA-11 uptake was found in prostate parenchyma in patients with primary prostate cancer. Additionally metastases in regional lymph nodes were diagnosed in 4 patients and bone metastases were found in one patient. The correlation between 68Ga-PSMA-11 uptake level and Gleason index in the primary tumor (R Spearmen = 0.25, p = 0.57) was not observed. PET-positive results were obtained in 14 patients and PET-negative results in 4 patients with biochemical recurrence of PCa. The relationship between the frequency of PET-positive results and Gleason index was not revealed (R Spearmen = 0.2, p = 0.39). We found a weak but significant correlation between the frequency of PET-positive results and the prostate tumor stage according to the T category (R Spearmen = 0.49, p = 0.049). In patients with low values of PSA (less than 1.0 ng/ml) in 4 out of 9 cases, PET-negative results were obtained. In patients with PSA level more than 1.0 ng/ml PET-positive results were obtained in all cases. Conclusions: PET/CT with 68Ga-PSMA-11 allows to diagnose the primary prostate cancer, to establish the stage of the disease in categories N and M, and also to determine the localization and dissemination of the tumor in patients with biochemical recurrence of prostate cancer. The relationship between 68Ga-PSMA-11 uptake in primary tumor and Gleason index was not found. The probability of obtaining PET-positive results in cases of biochemical recurrence is affected by a PSA level above 1 ng/ml and a high stage of the disease according to the T category (T3-T4).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philippe Thuillier ◽  
David Bourhis ◽  
Jean Philippe Metges ◽  
Romain Le Pennec ◽  
Karim Amrane ◽  
...  

AbstractTo present the feasibility of a dynamic whole-body (DWB) 68Ga-DOTATOC-PET/CT acquisition in patients with well-differentiated neuroendocrine tumors (WD-NETs). Sixty-one patients who underwent a DWB 68Ga-DOTATOC-PET/CT for a histologically proven/highly suspected WD-NET were prospectively included. The acquisition consisted in single-bed dynamic acquisition centered on the heart, followed by the DWB and static acquisitions. For liver, spleen and tumor (1–5/patient), Ki values (in ml/min/100 ml) were calculated according to Patlak's analysis and tumor-to-liver (TLR-Ki) and tumor-to-spleen ratios (TSR-Ki) were recorded. Ki-based parameters were compared to static parameters (SUVmax/SUVmean, TLR/TSRmean, according to liver/spleen SUVmean), in the whole-cohort and according to the PET system (analog/digital). A correlation analysis between SUVmean/Ki was performed using linear and non-linear regressions. Ki-liver was not influenced by the PET system used, unlike SUVmax/SUVmean. The regression analysis showed a non-linear relation between Ki/SUVmean (R2 = 0.55,0.68 and 0.71 for liver, spleen and tumor uptake, respectively) and a linear relation between TLRmean/TLR-Ki (R2 = 0.75). These results were not affected by the PET system, on the contrary of the relation between TSRmean/TSR-Ki (R2 = 0.94 and 0.73 using linear and non-linear regressions in digital and analog systems, respectively). Our study is the first showing the feasibility of a DWB 68Ga-DOTATOC-PET/CT acquisition in WD-NETs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sabri Eyuboglu ◽  
Geoffrey Angus ◽  
Bhavik N. Patel ◽  
Anuj Pareek ◽  
Guido Davidzon ◽  
...  

AbstractComputational decision support systems could provide clinical value in whole-body FDG-PET/CT workflows. However, limited availability of labeled data combined with the large size of PET/CT imaging exams make it challenging to apply existing supervised machine learning systems. Leveraging recent advancements in natural language processing, we describe a weak supervision framework that extracts imperfect, yet highly granular, regional abnormality labels from free-text radiology reports. Our framework automatically labels each region in a custom ontology of anatomical regions, providing a structured profile of the pathologies in each imaging exam. Using these generated labels, we then train an attention-based, multi-task CNN architecture to detect and estimate the location of abnormalities in whole-body scans. We demonstrate empirically that our multi-task representation is critical for strong performance on rare abnormalities with limited training data. The representation also contributes to more accurate mortality prediction from imaging data, suggesting the potential utility of our framework beyond abnormality detection and location estimation.


2016 ◽  
Vol 85 (2) ◽  
pp. 459-465 ◽  
Author(s):  
Lino M. Sawicki ◽  
Johannes Grueneisen ◽  
Benedikt M. Schaarschmidt ◽  
Christian Buchbender ◽  
James Nagarajah ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1832.2-1833
Author(s):  
J. De Jongh ◽  
R. Hemke ◽  
G. C. J. Zwezerijnen ◽  
M. Yaqub ◽  
I. Van der Horst-Bruinsma ◽  
...  

Background:Bone formation in spondyloarthritis (SpA) is presumably related to local enthesitis/peri-articular inflammation and ultimately may lead to functional limitation (1,2). X-rays only allow long-term monitoring of bone formation (≥2 years) (3). Imaging techniques that can visualize bone formation at an early stage would therefore be valuable. Positron Emission Tomography (PET) using [18F]Fluoride can visualize and quantify (early changes in) bone formation at molecular level (4).Objectives:To investigate the feasibility of [18F]Fluoride to assess new bone formation at axial and peripheral enthesial sites in SpA patients.Methods:Thus far, 5 of the total of 15 patients with clinically active ankylosing spondylitis (AS) (according to modified New York criteria and BASDAI ≥4) and 8 of the 25 patients with active psoriatic arthritis (PsA) (according to CASPAR criteria and ≥1 clinically active enthesitis) were included. Of each patient, a whole body [18F]Fluoride PET-CT scan was performed. All scans were visually judged and scored dichotomously by one reader (blinded for clinical data) for PET-positive lesions in the spine, peripheral enthesis sites and joints. Low dose CT was used for anatomical reference.Results:The study is ongoing, with whole body [18F]Fluoride PET-CT scans available in five AS patients and eight PsA patients. In 4/5 AS scans, at least (≥1) PET positive lesions were found in the cervical, thoracic and/or lumbar vertebrae. These were mainly found in anterior corners of vertebrae and bridging syndesmophytes (Fig. 1A). In all eight PsA patients, at least 1 PET positive lesion was visualized, projected either at the site of a tendon attachment (fascia plantaris, achilles- and patella tendon (Fig 1B)) or peri-articularly (in the ankle or wrist).Fig 1.[18F]Fluoride uptake in the cervical, thoracic and lumbar spine in a clinically active AS patient (A) and in the patella tendon of the right knee in a clinically active PsA patient (B)Conclusion:[18F]Fluoride PET uptake, reflecting new bone formation, can be visualized at heterogeneously distributed enthesis and (peri-)articular sites in AS- and PsA patients. The technique therefore is sensitive to visualize new bone formation and may reflect local disease activity. Additional scans will be collected and analyzed quantitatively, also after anti-TNF or Secukinumab treatment, to further investigate the applicability of [18F]Fluoride PET for monitoring of therapeutic effects on bone formation in SpA.References: :[1]Maksymowych WP, Mallon C, Morrow S, Shojania K, Olszynski WP, Wong RL, et al. Development and validation of the Spondyloarthritis Research Consortium of Canada (SPARCC) Enthesitis Index. Ann Rheum Dis. 2009;68(6):948-53.[2]Rezvani A, Bodur H, Ataman S, Kaya T, Bugdayci DS, Demir SE, et al. Correlations among enthesitis, clinical, radiographic and quality of life parameters in patients with ankylosing spondylitis. Mod Rheumatol. 2014;24(4):651-6.[3]Rudwaleit M, Khan MA, Sieper J. The challenge of diagnosis and classification in early ankylosing spondylitis: do we need new criteria? Arthritis Rheum 2005;52:1000-8..[4]Bruijnen ST, Verweij NJF, van Duivenvoorde L, Bravenboer N, Baeten D, van Denderen JC, et al. [18F]Fluoride PET-CT imaging of bone formation in ankylosing spondylitis before and after 12 weeks of anti-TNF treatment. 2017.Acknowledgments:We thank EULAR Foreum, Pfizer and Novartis for financial support of this investigator initiated study.Disclosure of Interests:Jerney de Jongh: None declared, Robert Hemke: None declared, Gerben C.J. Zwezerijnen: None declared, Maqsood Yaqub: None declared, Irene van der Horst-Bruinsma Grant/research support from: AbbVie, Novartis, Eli Lilly, Bristol-Myers Squibb, MSD, Pfizer, UCB Pharma, Consultant of: AbbVie, Novartis, Eli Lilly, Bristol-Myers Squibb, MSD, Pfizer, UCB Pharma, Marleen G.H. van de Sande Grant/research support from: Novartis, Eli lily, UCB, Jansen, Consultant of: Abbvie, Novartis, Eli lily, MSD, Arno Van Kuijk: None declared, Irene Bultink: None declared, Lot Burgemeister: None declared, Nancy M.A. van Dillen: None declared, Alexandre Voskuyl: None declared, Conny J. van der Laken: None declared


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingjie Shang ◽  
Zhiqiang Tan ◽  
Yong Cheng ◽  
Yongjin Tang ◽  
Bin Guo ◽  
...  

Abstract Background Standardized uptake value (SUV) normalized by lean body mass ([LBM] SUL) is recommended as metric by PERCIST 1.0. The James predictive equation (PE) is a frequently used formula for LBM estimation, but may cause substantial error for an individual. The purpose of this study was to introduce a novel and reliable method for estimating LBM by limited-coverage (LC) CT images from PET/CT examinations and test its validity, then to analyse whether SUV normalised by LC-based LBM could change the PERCIST 1.0 response classifications, based on LBM estimated by the James PE. Methods First, 199 patients who received whole-body PET/CT examinations were retrospectively retrieved. A patient-specific LBM equation was developed based on the relationship between LC fat volumes (FVLC) and whole-body fat mass (FMWB). This equation was cross-validated with an independent sample of 97 patients who also received whole-body PET/CT examinations. Its results were compared with the measurement of LBM from whole-body CT (reference standard) and the results of the James PE. Then, 241 patients with solid tumours who underwent PET/CT examinations before and after treatment were retrospectively retrieved. The treatment responses were evaluated according to the PE-based and LC-based PERCIST 1.0. Concordance between them was assessed using Cohen’s κ coefficient and Wilcoxon’s signed-ranks test. The impact of differing LBM algorithms on PERCIST 1.0 classification was evaluated. Results The FVLC were significantly correlated with the FMWB (r=0.977). Furthermore, the results of LBM measurement evaluated with LC images were much closer to the reference standard than those obtained by the James PE. The PE-based and LC-based PERCIST 1.0 classifications were discordant in 27 patients (11.2%; κ = 0.823, P=0.837). These discordant patients’ percentage changes of peak SUL (SULpeak) were all in the interval above or below 10% from the threshold (±30%), accounting for 43.5% (27/62) of total patients in this region. The degree of variability is related to changes in LBM before and after treatment. Conclusions LBM algorithm-dependent variability in PERCIST 1.0 classification is a notable issue. SUV normalised by LC-based LBM could change PERCIST 1.0 response classifications based on LBM estimated by the James PE, especially for patients with a percentage variation of SULpeak close to the threshold.


2021 ◽  
Vol 41 (01) ◽  
pp. 042-047
Author(s):  
Marc Blondon

AbstractActive cancer causes approximately 25% of all acute events of venous thromboembolism (VTE). While most of the cancer diagnoses are known or clinically apparent at the time of VTE, care providers and patients may be worried about the 3 to 8% risk of occult cancer occurring in the year after VTE. Several studies have compared limited to extensive cancer screening after acute VTE, especially with the addition of abdominal computed tomography (CT) or whole-body PET-CT, with the hope to shorten the time to cancer diagnosis and lead to less advanced cancer stages. These studies have not shown improved clinical outcomes with an extensive screening, and have led to current recommendations of limited screening for cancer in patients with acute VTE, including unprovoked cases. Several risk assessment models have been developed to identify patients at greatest risk of occult cancer, however, with low discriminative performances and no current clinical usefulness. Some clinical situations may empirically deserve a more thorough cancer screening, such as unprovoked upper extremity deep vein thrombosis (DVT), bilateral leg DVT, descending leg DVT, or recurrent VTE during anticoagulation.


Sign in / Sign up

Export Citation Format

Share Document