Inter-Annual Precipitation Variability Decreases Switchgrass Productivity from Arid to Mesic Environments

2018 ◽  
Vol 11 (3) ◽  
pp. 614-622 ◽  
Author(s):  
Lara G. Reichmann ◽  
Harold P. Collins ◽  
Virginia L. Jin ◽  
Mari-Vaughn V. Johnson ◽  
Jim R. Kiniry ◽  
...  
2021 ◽  
Author(s):  
Phong V. V. Le ◽  
Hai V. Pham ◽  
Luyen K. Bui ◽  
Anh N. Tran ◽  
Chien V. Pham ◽  
...  

Abstract Groundwater is a critical component of water resources and has become the primary water supply for agricultural and domestic uses in the Vietnamese Mekong Delta (VMD). Widespread groundwater level declines have occurred in the VMD over recent decades, reflecting that extraction rates exceed aquifer recharge in the region. However, the impacts of climate variability on groundwater system dynamics in the VMD remain poorly understood. Here, we explore recent changes in groundwater levels in shallow and deep aquifers from observed wells in the VMD and investigate their relations to the annual precipitation variability and El Niño–Southern Oscillation (ENSO). We show that groundwater level responds to changes in annual precipitation at time scales of approximately 1 year. Moreover, shallow (deep) groundwater in the VMD appears to correlate with the ENSO over intra-annual (inter-annual) time scales. Our findings reveal a critical linkage between groundwater level changes and climate variability, suggesting the need to develop an understanding of the impacts of climate variability across time scales on water resources in the VMD.


2012 ◽  
Vol 16 (11) ◽  
pp. 1-15 ◽  
Author(s):  
Charles W. Lafon ◽  
Steven M. Quiring

Abstract Fire affects virtually all terrestrial ecosystems but occurs more commonly in some than in others. This paper investigates how climate, specifically the moisture regime, influences the flammability of different landscapes in the eastern United States. A previous study of spatial differences in fire regimes across the central Appalachian Mountains suggested that intra-annual precipitation variability influences fire occurrence more strongly than does total annual precipitation. The results presented here support that conclusion. The relationship of fire occurrence to moisture regime is also considered for the entire eastern United States. To do so, mean annual wildfire density and mean annual area burned were calculated for 34 national forests and parks representing the major vegetation and climatic conditions throughout the eastern forests. The relationship between fire activity and two climate variables was analyzed: mean annual moisture balance [precipitation P − potential evapotranspiration (PET)] and daily precipitation variability (coefficient of variability for daily precipitation). Fire activity is related to both climate variables but displays a stronger relationship with precipitation variability. The southeastern United States is particularly noteworthy for its high wildfire activity, which is associated with a warm, humid climate and a variable precipitation regime, which promote heavy fuel production and rapid drying of fuels.


Author(s):  
Guoning Wan ◽  
Meixue Yang ◽  
Zhaochen Liu ◽  
Xuejia Wang ◽  
Xiaowen Liang

The Tibetan Plateau(TP) is known as ‘the water tower of Asian’, its precipitation variation play an important role in the eco-hydrological processes and water resources regimes. based on the monthly mean precipitation data of 65 meteorological stations over the Tibetan Plateau and the surrounding areas from 1961-2015,variations, trends and temporal-spatial distribution were analyzed, furthermore, the possible reasons were also discussed preliminarily. The main results are summarized as follows: the annual mean precipitation in the TP is 465.54mm during 1961-2015, among four seasons, the precipitation in summer accounts for 60.1% of the annual precipitation, the precipitation in summer half year (May.- Oct.) accounts for 91.0% while that in winter half year (Nov.- Apr.) only accounts for 9.0%; During 1961-2015, the annual precipitation variability is 0.45mm/a and the seasonal precipitation variability is 0.31mm/a, 0.13mm/a, -0.04mm/a and 0.04mm/a in spring, summer, autumn and winter respectively on the TP; The spatial distribution of precipitation can be summarized as decreasing from southeast to northwest in the TP, the trend of precipitation is decreasing with the increase of altitude, but the correlation is not significant. The rising of air temperature and land cover changes may cause the precipitation by changing the hydrologic cycle and energy budget, furthermore, different pattern of atmospheric circulation can also influence on precipitation variability in different regions.


2021 ◽  
Author(s):  
Nels Bjarke ◽  
Ben Livneh ◽  
Joseph Barsugli ◽  
Xiao Wei Quan ◽  
Martin Hoerling

<p>Evaluating the future of surface water availability in the western United States requires a robust analysis of the projected trends in precipitation variability within the new generation of global climate model (GCM) simulations. To understand the reliability of future projections, we first construct a historical baseline (1950-2014) of the precipitation climatology and  contribution of heavy precipitation events to the total annual precipitation from an ensemble of in-situ (Global Historical Climatology Network (GHCN)) and gridded precipitation products (Abatzoglou, 2013; Livneh et al., 2015; Newman et al., 2015). This historical baseline is used to evaluate the representation of precipitation variability during the historical period of GCM simulations from the CMIP6 HighResMIP and ScenarioMIP ensembles as well as the multi-resolution, factual-counterfactual ensemble of CAM5 simulations. We frame our analysis in the context of water resources by using a collection of large basins across the western US to demonstrate that the role of GCM resolution in the representation of precipitation variability is highly dependent on regional differences in topographical controls and dominant climatological drivers of precipitation. In most regions, we find that the highest-resolution GCM simulations (25-50 km) portray realistic occurrences of heavy precipitation events when compared to gridded historical precipitation at the same spatial resolution, whereas coarser GCM simulations (100-200 km) tend to distribute precipitation more evenly throughout the year than expected. When compared to the historical period (1950-2014), future projections (2014-2050) from both HighResMIP and ScenarioMIP ensembles produce more variable precipitation with a higher fraction of the annual precipitation falling in heavy precipitation events.  Furthermore, we explore methods for constraining uncertainty in the projection of future precipitation variability across the Western US using a statistical assessment of the historical GCM simulations compared to the historical baseline.</p><p>References</p><p>Abatzoglou, J. T. (2013). Development of gridded surface meteorological data for ecological applications and modelling. International Journal of Climatology, 33(1), 121–131. https://doi.org/10.1002/joc.3413</p><p>Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R., & Brekke, L. (2015). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2(1), 1–12. https://doi.org/10.1038/sdata.2015.42</p><p>Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. R., Hopson, T., & Duan, Q. (2015). Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences, 19(1), 209–223. https://doi.org/10.5194/hess-19-209-2015</p>


Sign in / Sign up

Export Citation Format

Share Document