scholarly journals Multi-year and Multi-site Establishment of the Perennial Biomass Crop Miscanthus × giganteus Using a Staggered Start Design to Elucidate N Response

2019 ◽  
Vol 12 (3) ◽  
pp. 471-483 ◽  
Author(s):  
Mauricio Tejera ◽  
Nicholas Boersma ◽  
Andy Vanloocke ◽  
Sotirios Archontoulis ◽  
Philip Dixon ◽  
...  
2015 ◽  
Vol 317 ◽  
pp. 6-15 ◽  
Author(s):  
Ranjan Muthukrishnan ◽  
Natalie M. West ◽  
Adam S. Davis ◽  
Nicholas R. Jordan ◽  
James D. Forester

2018 ◽  
Vol 02 (03) ◽  
Author(s):  
Sanyuan Tang ◽  
Zi Wang ◽  
Chengxuan Chen ◽  
Peng Xie ◽  
Qi Xie

Author(s):  
Natalia Kordala ◽  
Małgorzata Lewandowska ◽  
Włodzimierz Bednarski

AbstractThe pretreatment of lignocellulosic material performed to improve substrate’s susceptibility to enzymatic hydrolysis is usually accompanied by reactions leading to the synthesis of compounds that inhibit the metabolic activity of microorganisms. Their toxicity is the main obstacle to the successful bioconversion of lignocellulosic hydrolysates. The identification of these inhibitors and the choice of the optimal detoxication method are crucial for the improving the efficiency of fermentation processes. Material rinsing with water after processing is a common detoxication practice. However, it generates material losses, thus affecting contents of saccharides in the fermentation medium, which may in turn trigger higher costs of lignocellulose conversion to ethanol and other products with a higher added value. A study was undertaken to determine the effect of selected methods for the detoxication of an enzymatic hydrolysate from Miscanthus giganteus on the fermentation efficiency of saccharide derivatives. The experiment conducted with Mucor rouxii DSM 1191 demonstrated the usability of the detoxication method based on the activated carbon. After 96-h fermentation of Miscanthus hydrolysates, the alcohol content in the post-reaction medium was higher by 14% than in the control experiment wherein the material was rinsed with water after pretreatment. The experiment carried out with Saccharomyces cerevisiae 7, NRRL 978 showed no positive impact of the alternative detoxication methods replacing material rinsing on the efficiency of ethanol synthesis. The highest concentration of this metabolite (2.04% (v/v)) was obtained in the experimental variant in which the mentioned operation was coupled with detoxication of hydrolysates using calcium hydroxide.


2021 ◽  
Vol 72 ◽  
pp. 105462
Author(s):  
Dimitrios Tsalagkas ◽  
Zoltán Börcsök ◽  
Zoltán Pásztory ◽  
Parag Gogate ◽  
Levente Csóka

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 798
Author(s):  
Valentina Pidlisnyuk ◽  
Andriy Herts ◽  
Volodymyr Khomenchuk ◽  
Aigerim Mamirova ◽  
Oleksandr Kononchuk ◽  
...  

Miscanthus × giganteus (M. × giganteus) is a perspective plant produced on marginal and contaminated lands with biomass used for energy or bioproducts. In the current study, M. × giganteus development was tested in the diesel-contaminated soils (ranged from 250 mg kg−1 to 5000 mg kg−1) and the growth dynamic, leaves quantity, plants total area, number of harvested stems and leaves, SPAD and NPQt parameters were evaluated. Results showed a remarkable M. × giganteus growth in a selected interval of diesel-contaminated soil with sufficient harvested biomass. The amendment of soil by biochar 1 (produced from wastewater sludge) and biochar 2 (produced from a mixture of wood waste and biohumus) improved the crop’s morphological and physiological parameters. Biochar 1 stimulated the increase of the stems’ biomass, while biochar 2 increased the leaves biomass. The plants growing in the uncontaminated soil decreased the content of NO3, pH (KCl), P2O5 and increased the content of NH4. Photosynthesis parameters showed that incorporating biochar 1 and biochar 2 to the diesel-contaminated soil prolonged the plants’ vegetation, which was more potent for biochar 1. M. × giganteus utilization united with biochar amendment can be recommended to remediate diesel-contaminated land in concentration range 250–5000 mg kg−1.


Agriculture ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 67
Author(s):  
Piotr Żurawik

Crustaceans, including shrimps, are an important group of marine products processed in over 50 countries around the world. It is one of the most profitable and fast-growing processing branches. About 30 to 40% of crustaceans are used immediately after fishing, while 60–70% are processed. This generates thousands of tons of waste, proper management of which becomes increasingly important. The study was conducted in the years 2015–2017. Planting material included rhizomes of Miscanthus sinensis and Miscanthus × giganteus. Shrimp shells, dried and fragmented into 2–3 mm long pieces, were added to the soil at a dose of 5%, 10% and 15%. Mineral soil without the dried waste served as control. pH and substrate salinity were determined both before and after the growing season, and vegetative and generative traits of the plants were assessed. Shrimp biowaste is rich in N, P, K, Ca and Mg, has alkaline pH and high salinity. Its effects on plants depend on its dose and plant species. Miscanthus sinensis turned out more sensitive to the substrate salinity but in both species shrimp biowaste improved their ornamental value. For Miscanthus sinensis the most beneficial dose was 5%, while for Miscanthus × giganteus it was 15%.


Fuel ◽  
2014 ◽  
Vol 121 ◽  
pp. 189-197 ◽  
Author(s):  
Gang Xue ◽  
Marzena Kwapinska ◽  
Witold Kwapinski ◽  
Krzysztof M. Czajka ◽  
James Kennedy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document