scholarly journals Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system

2020 ◽  
Vol 17 (2) ◽  
pp. 419-433 ◽  
Author(s):  
Zhao-Jie Song ◽  
Meng Li ◽  
Chuang Zhao ◽  
Yu-Long Yang ◽  
Ji-Rui Hou





2005 ◽  
Author(s):  
Frederic Maubeuge ◽  
Danielle Christine Morel ◽  
Jean-Pierre Charles Fossey ◽  
Said Hunedi ◽  
Jacques Albert Danquigny




2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>



Author(s):  
Muhammad Khan Memon ◽  
Ubedullah Ansari ◽  
Habib U Zaman Memon

In the surfactant alternating gas injection, the injected surfactant slug is remained several days under reservoir temperature and salinity conditions. As reservoir temperature is always greater than surface temperature. Therefore, thermal stability of selected surfactants use in the oil industry is almost important for achieving their long-term efficiency. The study deals with the screening of individual and blended surfactants for the applications of enhanced oil recovery that control the gas mobility during the surfactant alternating gas injection. The objective is to check the surfactant compatibility in the presence of formation water under reservoir temperature of 90oC and 120oC. The effects of temperature and salinity on used surfactant solutions were investigated. Anionic surfactant Alpha Olefin Sulfonate (AOSC14-16) and Internal Olefin Sulfonate (IOSC15-18) were selected as primary surfactants. Thermal stability test of AOSC14-16 with different formation water salinity was tested at 90oC and 120oC. Experimental result shows that, no precipitation was observed by surfactant AOSC14-16 when tested with different salinity at 90oC and 120oC. Addition of amphoteric surfactant Lauramidopropylamide Oxide (LMDO) with AOSC14-16 improves the stability in the high percentage of salinity at same temperature, whereas, the surfactant blend of IOSC15-18 and Alcohol Aloxy Sulphate (AAS) was resulted unstable. The solubility and chemical stability at high temperature and high salinity condition is improved by the blend of AOSC14-16+LMDO surfactant solution. This blend of surfactant solution will help for generating stable foam for gas mobility control in the methods of chemical Enhanced Oil Recovery (EOR).



2018 ◽  
Author(s):  
Martijn T. G. Janssen ◽  
Fardin Azimi ◽  
Pacelli L. J. Zitha


Sign in / Sign up

Export Citation Format

Share Document