scholarly journals Insight into the oxidative desulfurization of high-sulfur petroleum coke under mild conditions: a journey of vanadium-substituted Dawson-type phosphotungstic acid

2021 ◽  
Author(s):  
Fu-Min Li ◽  
Ming-Qing Hua ◽  
Yan-Chen Wei ◽  
Ji-Xing Liu ◽  
Jia-Hong Gong ◽  
...  

AbstractHigh-sulfur petroleum coke (HSPC), that is a by-product from slag oil in the coking process of refining, shows versatility values in practical applications and, however, concentrates the majority of organic sulfur. Herein, we design and construct a highly effective CTAB@HPA composites to be explored for the catalytic oxidative desulfurization of HSPC under mild conditions using hydrogen peroxide as the oxidant and 1-butyl-3-methylimidazole tetrafluoroborate ionic liquid as the extractant. The results demonstrate that the sulfur content of HSPC could be strikingly reduced from 4.46 wt% to 2.48 wt% under 60 °C and atmospheric pressure, and that the organic sulfur in HSPC is mainly oxidized to sulfoxide, sulfone and sulfate, which latter can be directly separated from petroleum coke. Moreover, the effect of reaction conditions on the desulfurization performance of HSPC as well as the catalytic oxidation reaction kinetic of HSPC desulfurization was systematically investigated. Furthermore, a mechanism for the oxidative desulfurization of HSPC over CTAB@HPA catalysts was proposed. Therefore, this work provides new insight into how to construct active catalysts for the desulfurization of HSPC under mild conditions.

2011 ◽  
Vol 396-398 ◽  
pp. 1283-1286
Author(s):  
Jian Peng Zhu ◽  
Chun Hu Li ◽  
Jia Ling Chen ◽  
Ying Wei Luo

Abstract. Investigation of polymer resin as catalyst in the oxidative desulfurization (ODS) process has revealed that the method can be applied to make a relative high removal of sulfur compounds. The reaction conditions, including temperature, amount of oxidant and reaction time were studied. The best result occurs under mild conditions with respect to room temperature and atmospheric pressure, to remove 75.54% of the totle sulfur content in the presence of H2O2 with an O/S molar ratio of 17. Possible mechanism is also disscussed.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw0982 ◽  
Author(s):  
Zheng-Zhong Zhu ◽  
Zuo-Chang Chen ◽  
Yang-Rong Yao ◽  
Cun-Hao Cui ◽  
Shu-Hui Li ◽  
...  

Carboncones, a special family of all-carbon allotropes, are predicted to have unique properties that distinguish them from fullerenes, carbon nanotubes, and graphenes. Owing to the absence of methods to synthesize atomically well-defined carboncones, however, experimental insight into the nature of pure carboncones has been inaccessible. Herein, we describe a facile synthesis of an atomically well-defined carboncone[1,2] (C70H20) and its soluble penta-mesityl derivative. Identified by x-ray crystallography, the carbon skeleton is a carboncone with the largest possible apex angle. Much of the structural strain is overcome in the final step of converting the bowl-shaped precursor into the rigid carboncone under mild reaction conditions. This work provides a research opportunity for investigations of atomically precise single-layered carboncones having even higher cone walls and/or smaller apex angles.


2021 ◽  
Vol 939 (1) ◽  
pp. 012006
Author(s):  
Zh Makhatov ◽  
Zh Yelemanova ◽  
R Aitkulova ◽  
Z Narymbayeva ◽  
A Dairabayeva ◽  
...  

Abstract The aim of the study is to select reaction conditions for hydrolysis of wheat straw with dilute sulfuric acid for maximum xylose extraction under mild conditions (at atmospheric pressure and temperature of 100°C). The authors found that maximum glucose yield (72.4-77.1 weight % of the initial content of hemicelluloses in wheat straw) is achieved at a concentration of H2SO4 2-3 weight % and the hydrolysis process duration of 5 hours. Analysis of the obtained hydrolysates showed that they contain cellulose (56.8-70.4 weight %), lignin (19.8-28.8 weight %) and hemicelluloses (2.8-15.3 weight %).


2015 ◽  
Vol 51 (53) ◽  
pp. 10703-10706 ◽  
Author(s):  
Hongying Lü ◽  
Pengcheng Li ◽  
Changliang Deng ◽  
Wanzhong Ren ◽  
Shunan Wang ◽  
...  

An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions.


2014 ◽  
Vol 43 (31) ◽  
pp. 11950-11958 ◽  
Author(s):  
Xu-Sheng Wang ◽  
Yuan-Biao Huang ◽  
Zu-Jin Lin ◽  
Rong Cao

PTA@MIL-101(Cr)-NH2 has been prepared via an anion exchange method, and showed high catalytic activity for oxidative desulfurization under mild conditions.


2021 ◽  
Author(s):  
Baixue Li ◽  
Jia Wang ◽  
Anjun Qin ◽  
Ben Zhong Tang

An efficient imidazole-based Cu(i)-catalyzed azide–alkyne click polymerization under mild reaction conditions was developed.


Nanoscale ◽  
2015 ◽  
Vol 7 (40) ◽  
pp. 16952-16959 ◽  
Author(s):  
Kaige Zhang ◽  
Gongke Li ◽  
Yuling Hu

The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water.


2016 ◽  
Vol 18 (17) ◽  
pp. 4611-4615 ◽  
Author(s):  
Shiyao Liu ◽  
Naoki Suematsu ◽  
Keiji Maruoka ◽  
Seiji Shirakawa

An efficient synthesis of cyclic carbonates from epoxides and CO2 under mild reaction conditions was achieved via the use of a designed bifunctional quaternary phosphonium iodide catalyst.


Sign in / Sign up

Export Citation Format

Share Document