scholarly journals The IXth CSSI international symposium on heat shock proteins in biology and medicine: stress responses in health and disease

2019 ◽  
Vol 24 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Stuart K. Calderwood ◽  
Elizabeth A. Repasky ◽  
Len Neckers ◽  
Lawrence E. Hightower
2003 ◽  
Vol 66 (11) ◽  
pp. 2045-2050 ◽  
Author(s):  
YI ZHANG ◽  
MANSEL W. GRIFFITHS

Heat shock proteins play an important role in protecting bacterial cells against several stresses, including starvation. In this study, the promoters for two genes encoding heat shock proteins involved in many stress responses, UspA and GrpE, were fused with the green fluorescent protein (gfp) gene. Thus, the expression of the two genes could be quantified by measuring the fluorescence emitted by the cells under different environmental conditions. The heat resistance levels of starved and nonstarved cells during storage at 5, 10, and 37°C were compared with the levels of expression of the uspA and grpE genes. D52-values (times required for decimal reductions in count at 52°C) increased by 11.5, 14.6, and 18.5 min when cells were starved for 3 h at 37°C, for 24 h at 10°C, and for 2 days at 5°C, respectively. In all cases, these increases were significant (P < 0.01), indicating that the stress imposed by starvation altered the ability of E. coli O157:H7 to survive subsequent heat treatments. Thermal tolerance was correlative with the induction of UspA and GrpE. At 5°C, the change in the thermal tolerance of the pathogen was positively linked to the induced expression of the grpE gene but negatively related to the expression of the uspA gene. The results obtained in this study indicate that UspA plays an important role in starvation-induced thermal tolerance at 37°C but that GrpE may be more involved in regulating this response at lower temperatures. An improvement in our understanding of the molecular mechanisms involved in these cross-protection responses may make it possible to devise strategies to limit their effects.


Parasitology ◽  
2001 ◽  
Vol 122 (5) ◽  
pp. 583-588 ◽  
Author(s):  
L. VARGAS-PARADA ◽  
C. F. SOLÍS ◽  
J. P. LACLETTE

Heat shock and stress responses are documented for the first time in larval stages of the cestodes Taenia solium and Taenia crassiceps. Radioactive metabolic labelling after in vitro incubation of cysts at 43 °C, revealed the induction of heat shock proteins. In T. crassiceps, the major heat shock proteins were 80, 70 and 60 kDa. After prolonged incubation, a set of low molecular weight heat shock proteins (27, 31, 33 and 38 kDa), were also induced. In vitro incubation of cysts at 4 °C, induced the synthesis of stress proteins ranging from 31 to 80 kDa, indicating the parasite is also able to respond to cold shock. T. solium cysts exposure to temperature stress also resulted in an increased synthesis of 2 major heat shock proteins of 80 and 70 kDa. Western blots using the excretory–secretory products of T. solium showed that 2 heat shock proteins were recognized by antibodies in the sera of cysticercotic patients: one of 66 kDa and another migrating close to the run front. The T. solium 66 kDa protein was also recognized by specific antibodies directed to a 60 kDa bacterial heat shock protein, suggesting that it belongs to this family of proteins.


Author(s):  
Michał Rurek ◽  
Magdalena Czołpińska ◽  
Tomasz Andrzej Pawłowski ◽  
Włodzimierz Krzesiński ◽  
Tomasz Spiżewski

Complex proteomic and physiological approaches to study cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by 2D PAGE in relation to respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold alternative oxidase isoforms were extensively upregulated; major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. On the contrary, distinct proteins, including carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Few metabolic regulations were suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse mode (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations on molecular and physiological levels. This implies more complex model of action of investigated stresses on plant mitochondria.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 691c-691
Author(s):  
Robert E. Paull ◽  
Chris B. Watkins

Production of heat shock proteins (HSP) in response to high temperatures are a highly recognizable feature of plant and animal systems. It is thought that such proteins play a critical role in survival under supraoptimal temperature conditions. The use of heat treatments has been examined extensively, especially for disinfestation of fruit and disease control. Heat treatments can affect physiological responses, such as ethylene production, softening, and other ripening factors, as well as reducing physiological disorders, including chilling injury. HSPs have been implicated in a number of stress responses, but the extent that they are involved, especially in amelioration of chilling injury, is a subject of debate. In a number of cases, heat shock proteins do not appear to be involved, and HSPs do not explain long-term adaptation to heat; other systems for which we do not have models may be at work. Resolution of these issues may require the use of transgenic plants with modified heat shock responses.


2017 ◽  
Vol 3 (3) ◽  
pp. 334-337
Author(s):  
Karuna Datta ◽  
Kshitij Rahalkar ◽  
Dinesh Kumar Dubey

For the reason that no model will ever totally replicate clinical human wound healing, it is necessary that the model operated be selected with care. Heat shock proteins (HSP) are articulated in response to numerous biological stresses, comprising heat, high pressures, and toxic composites. It is also one of the mainly bountiful cellular proteins found under non-stress situation.Hsp70 and Hsp90 refer to families of heat shock proteins on the order of 70,90 kilodaltons in size, respectively. The small 8-kilodalton protein ubiquitin, which marks proteins for degradation, also has features of a heat shock protein. Cells are attentive about getting these folds right for the reason that mis folded proteins can change the normal life of the cell. In some cases change is good, in others deadly. When Heat Shock Proteins90 is conceded the number of morphological alterations upsurges, which lead to creation of inactive or abnormally active polypeptides.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Klaus Kratochwill ◽  
Thorsten O. Bender ◽  
Anton M. Lichtenauer ◽  
Rebecca Herzog ◽  
Silvia Tarantino ◽  
...  

Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.


Sign in / Sign up

Export Citation Format

Share Document