Performance and Bacterial Communities for Bio-drying with Thermophili Bacteria of Sewage Sludge

2018 ◽  
Vol 22 (12) ◽  
pp. 4806-4813
Author(s):  
Seyong Park ◽  
Hyoungwoon Song ◽  
Moonil Kim
2015 ◽  
Vol 49 (12) ◽  
pp. 7356-7363 ◽  
Author(s):  
Jian-Qiang Su ◽  
Bei Wei ◽  
Wei-Ying Ou-Yang ◽  
Fu-Yi Huang ◽  
Yi Zhao ◽  
...  

Archaea ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Xue Yang ◽  
Xiang Liu ◽  
Si Chen ◽  
Guangmin Liu ◽  
Shuyan Wu ◽  
...  

Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.


2016 ◽  
Vol 90 ◽  
pp. 44-51 ◽  
Author(s):  
Lu Cai ◽  
Tong-Bin Chen ◽  
Ding Gao ◽  
Jie Yu

2016 ◽  
Vol 62 (2) ◽  
pp. 52-61 ◽  
Author(s):  
Katarína Ondreičková ◽  
Alžbeta Žofajová ◽  
Michaela Piliarová ◽  
Jozef Gubiš ◽  
Martina Hudcovicová

Abstract In this study, bacterial genetic diversity from the rhizosphere of barley and wheat were studied. The plants were sown in pots with aliquot amount of 15 t/ha concentration of soil additive derived from sewage sludge and agricultural by-products represented by wastes from grain mill industry and crushed corn cobs. The plants sown in pots without the addition of soil additive represented control samples. The rhizosphere samples were collected on two dates (plant flowering and maturity) and the composition of bacterial communities were detected using two molecular fingerprinting methods – automated ribosomal intergenic spacer analysis (ARISA) and terminal restriction fragment length polymorphism (T-RFLP). Microbial biomass expressed as the amount of metagenomics DNA was higher in soils with addition of soil additive, except during maturity stage in barley rhizosphere. Nevertheless, statistically significant differences between control and sludge samples were not detected in any case. Similarly, no changes were detected in the composition of bacterial community between control and sludge samples in barley and wheat rhizosphere by using cluster analysis. Only minor temporal changes in the composition of bacterial community between flowering and maturity periods were observed. These changes were related to the samples collected in the plant maturity stage. In this stage, plants were completely mature and their impact on the rhizosphere bacterial communities in the form of root exudates was limited. Statistically significant differences between ARISA and T-RFLP methods were detected in all measured values of diversity indices. Despite these differences, both methods gave results leading to similar conclusions.


Chemosphere ◽  
2020 ◽  
Vol 238 ◽  
pp. 124629 ◽  
Author(s):  
Hana Stiborova ◽  
Michal Strejcek ◽  
Lucie Musilova ◽  
Katerina Demnerova ◽  
Ondrej Uhlik

2021 ◽  
Author(s):  
Joseph Ikenna Ubah ◽  
Ogwueleka Tochukwu Chibueze ◽  
C. I Ofeoshi

Abstract The aim of this study is to determine the bacterial compositions during the bio-drying process of sewage sludge. Bio-dried products and sewage sludge were randomly collected from the Wupa wastewater/sludge treatment plant in Idu Industrial area Abuja, Federal Capital Territory, Nigeria. A mixture of sewage sludge and sawdust that were bio–dried and cured before this experiment were composition of the bio–dried product. The bacterial communities were analyzed in the laboratory using Pour Plate Technique to examine the total bacterial present in the sewage sludge bio-drying material (SSBM) and the bacterial were later isolated using other techniques like Oxidase test, Catalase test, Grams Staining technique and Spread Plate Technique. Evaporation of free water and water formation was determined by humidity gauge and moisture-oven drying method. From the results obtained, Acinetobacter was the most abundant bacterial during the initial and final thermophilic phases (43% and 37%) respectively. Bacillus was the most abundant amid the cooling stage (53%). The water evaporation and water generation rate were credited to the degradation of organic content of the SSBM and heat produced by bacterial activities. From this study, there is a clear indication that the bacterial density grades that increase the temperature of the SSBM during the bio–drying process reshaped the bacterial communities.


2019 ◽  
Vol 144 ◽  
pp. 107-111 ◽  
Author(s):  
Yanchao Bai ◽  
Lijuan Mei ◽  
Wengang Zuo ◽  
Yang Zhang ◽  
Chuanhui Gu ◽  
...  

2021 ◽  
Author(s):  
Jorge Domínguez ◽  
Manuel Aira ◽  
Keith A. Crandall ◽  
Marcos Pérez-Losada

Abstract Wastewater treatment plants produce hundreds of million tons of sewage sludge every year all over the world. Vermicomposting is well established worldwide and has been successful in processing sewage sludge, which can contribute to alleviate the severe environmental problems caused by their disposal. Here, we utilized 16S and ITS rRNA high-throughput sequencing to characterize bacterial and fungal community composition and structure during the gut- and cast-associated processes (GAP and CAP, respectively) of vermicomposting of sewage sludge. Bacterial and fungal community composition and diversity changed significantly during both vermicomposting processes. Most of the bacterial and fungal taxa in the sewage sludge were eliminated during vermicomposting, mainly through the GAP. Vermicomposting of sewage resulted in a stable and rich microbial community with potential biostimulant properties that may aid plant growth. Our results support the use of vermicompost derived from sewage sludge for sustainable agricultural practices.


2019 ◽  
Vol 65 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Katarína Ondreičková ◽  
Marcela Gubišová ◽  
Jozef Gubiš ◽  
Lenka Klčová ◽  
Miroslav Horník

Abstract Application of sewage sludge to soil is a potentially inexpensive source of nutrition for plants, but may contain undesirable and toxic substances, e.g. heavy metals. Alterations in microbial communities can serve as an environmental indicator of possible soil contamination. We used two molecular fingerprinting methods (Automated Ribosomal Intergenic Spacer Analysis, ARISA and Terminal Restriction Fragment Length Polymorphism, T-RFLP) to study changes in the genetic diversity of bacterial communities in the rhizosphere of Arundo donax L. cultivated in the soil fertilised with additive based on sewage sludge from wastewater treatment plant and agricultural by-products represented by crushed corn hobs and wastes from grain mill industry. The metagenomic DNA extracted from rhizosphere samples were collected in August and November 2014. The amount of mgDNA was statistically higher in samples with additive than in control samples without it in both dates. The Venn diagrams showed that operational taxonomic units which were common to all samples were represented in 32.8% in ARISA and 43.4% in T-RFLP. However, based on Principal component analysis and subsequent PERMANOVA statistical tests did not confirm significant differences in the rhizosphere of control plants and plants grown in the soil supplemented with sewage sludge in dose 5 and 15 t/ha present in the additive.


Sign in / Sign up

Export Citation Format

Share Document