A Disturbed State Concept-Based Stress-Relaxation Model for Expansive Soil Exposed to Freeze-Thaw Cycling

2020 ◽  
Vol 24 (9) ◽  
pp. 2621-2630
Author(s):  
Shengyi Cong ◽  
Zhong Nie ◽  
Qingli Hu
2022 ◽  
Vol 15 (2) ◽  
Author(s):  
Zhongnian Yang ◽  
Qi Zhang ◽  
Wei Shi ◽  
Zhaochi Lu ◽  
Zhibin Tu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Q. Liu ◽  
W. Chen ◽  
J. K. Guo ◽  
R. F. Li ◽  
D. Ke ◽  
...  

Freeze-thaw cycle is a type of fatigue loading, and rock stress relaxation under freeze-thaw cycles takes into account the influence of the freeze-thaw cycle damage and deterioration. Rock stress relaxation under freeze-thaw cycles is one of the paramount issues in tunnel and slope stability research. To accurately describe the mechanical behaviour of stress relaxation of rocks under freeze-thaw, the software element is constructed based on the theory of fractional calculus to replace the ideal viscous element in the traditional element model. The freeze-thaw damage degradation of viscosity coefficient is considered. A new three-element model is established to better reflect the nonlinear stress relaxation behavior of rocks under freeze-thaw. The freeze-thaw and stress relaxation of rock are simulated by ABAQUS, the relevant model parameters are determined, and the stress relaxation equation of rock under freeze-thaw cycle is obtained based on numerical simulation results. The research shows that the test results are consistent with the calculated results, indicating that the constitutive equation can better describe the stress relaxation characteristics of rocks under freeze-thaw and provide theoretical basis for surrounding rock support in cold region.


2021 ◽  
Vol 7 (2) ◽  
pp. 363-366
Author(s):  
Thomas Reuter ◽  
Christof Hurschler

Abstract Mechanical parameters of hard and soft tissues are explicit markers for quantitative tissue characterization. In this study, we present a comparison of biphasic material properties of equine articular cartilage estimated from stress relaxation (ε = 6 %, t = 1000 s) and creep indentation tests (F = 0.1 N, t = 1000 s). A biphasic 3D-FE-based method is used to determine the biomechanical properties of equine articular cartilage. The FE-model computation was optimized by exploiting the axial symmetry and mesh resolution. Parameter identification was executed with the Levenberg- Marquardt-algorithm. Additionally, sensitivity analyses of the calculated biomechanical parameters were performed. Results show that the Young’s modulus E has the largest influence and the Poisson’s ratio of ν ≤ 0.1 is rather insensitive. The R² of the fit results varies between 0.882 and 0.974 (creep model) and between 0.695 and 0.930 (relaxation model). The averaged parameters E and k determined from the creep model yield higher values in comparison to the relaxation model. The differences can be traced back to the experimental settings and to the biphasic material model.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanlong Li ◽  
Zili Wang ◽  
Yang Luo

Shear strength of shallow expansive soil varies along with the depth under the freeze-thaw effect. This work investigates shear strength characteristics of shallow expansive soil by simulating the actual freeze boundary conditions of seasonal frozen areas with water supplement. An integrated approach incorporating the freeze-thaw test and direct shear test was adopted. Firstly, unidirectional freezing tests for expansive soil columns under three different freezing temperature gradients were carried out. Secondly, direct shear tests under low vertical stress were performed on the standard samples, which were prepared by using cutting rings cut the thawed expansive soil columns into nine segments along with the depth. Temperature, water content, and dry density at different depths were also investigated after the freeze-thaw process. The test results showed that, after the freeze-thaw process, the shear strength of expansive soil columns showed significant differences along with the depth and highly correlated with water content, specifically the higher water content and the lower shear strength. The minimum shear strength in the expansive soil columns occurred at the soil layer below the frozen and unfrozen zones interface. The expansive soil column’s shear strength changed most under the moderate freezing temperature gradient corresponding to the most considerable shear strength reduction. Moreover, the significant decrease in cohesion was the main reason for the shear strength reduction of expansive soil after the freeze-thaw process. These results indicate significant depth variability in shear strength of expansive soil under the freeze-thaw effect.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhongnian Yang ◽  
Jianhang Lv ◽  
Wei Shi ◽  
Chao Jia ◽  
Chu Wang ◽  
...  

AbstractThis paper presents an experimental investigation on the effect of freeze–thaw cycling on expansive soil slopes with different initial moisture contents. Clay soil from Weifang, China, was remolded and selected to build the expansive soil slope for the indoor slope model tests. A total of five freeze–thaw cycles were applied to the three expansive soil slopes with different moisture contents ranging from 20 to 40%. Variations of the crack developments, displacements, soil pressures and moisture contents of the expansive soil slope with different initial moisture contents during the freeze–thaw cycling were reported and discussed. The results indicate that higher moisture contents can slow the development of cracks and that the soil pressure increases with decreasing temperature. The soil pressure of slope decreases after freeze–thaw cycle, and the change amplitude of soil pressure after freeze–thaw is proportional to water content. The slopes with a moisture content of 20% and 30% shrinks during freezing and expands during thawing, which was named ES-FSTE Model, while the slope with a 40% moisture content shows the opposite behavior. During freeze–thaw cycles, moisture migrates to slope surface. As initial moisture contents increase, the soil heat transfer rate and bearing capacity decreases after five freeze–thaw cycling.


2022 ◽  
Vol 11 (01) ◽  
pp. 27-30
Author(s):  
Ekrem Kalkan

The clayey soils in areas with seasonal frost are exposed to at least one freeze-thaw cycle every year and worsen their engineering properties. To prevent the engineering properties of clayey soils, it is necessary to improve the freeze-thaw resistance of them. In this study, the clayey soil was stabilized by using red mud and cement additive materials. Prepared samples of clayey soil and stabilized clayey soil were subjected to the unconfined compressive test. To investigate the effects of red mud and cement additive materials on the freeze-thaw resistance of clayey soil, the natural and stabilized expansive soil samples were exposed to the freeze-thaw cycles under laboratory conditions. The obtained results showed that the red mud and cement additive materials increased the freeze-thaw resistance of clayey soil. Consequently, it was concluded that red mud and cement additive materials can be successfully used to improve the freeze-thaw resistance of clayey soils.


Sign in / Sign up

Export Citation Format

Share Document