Optimizing the morphology, mechanical and crystal properties of in-situ polypropylene/polystyrene blends by reactive extrusion

2016 ◽  
Vol 17 (10) ◽  
pp. 1550-1557 ◽  
Author(s):  
Ruiqi Chen ◽  
Xueliang Jiang ◽  
Feng You ◽  
Chu Yao
2021 ◽  
Author(s):  
Bingbing Gao ◽  
Jiahui Yang ◽  
Shuidong Zhang ◽  
Xiangyu Li

Abstract High performances fiber and improved interfacial interaction can enhance the properties of polymer composites. Herein, microcrystalline cellulose (MCC) was oxidized by H2O2/CuSO4, a new Fenton process, to achieve oxidized MCC (OCNCs) with 16 ± 1% carboxyl content. Noteworthy, the thermal stability of OCNC was superior to CNC prepared by acid hydrolysis. Interestingly, the primary alcohol groups of MCC were selective oxidized and OCNCs achieved 11.0 nm, 231.6 nm and 72% of average diameter, length and degree of crystallinity, respectively. Then glycerol, starch and OCNCs were reactive extruded to fabricate TPS/OCNC bionanocomposites and their structure and performances were evaluated systematically. Strikingly, significant improvement in glass transition temperature (from 63.1 to 94.5 °C) and notch impact strength (from 1.3 to 3.9 kJ/m2) were noted for the amorphous TPS/OCNC with 1 wt% OCNC, and its tensile strength achieved 20.5 MPa, simultaneously. The improved mechanism of these performances was assigned to In-Situ forming “Carboxyl-Hydroxyl” hydrogen bonds which acted as the physically cross-linking interactions and improved the interfacial compatibility. We showcase Fenton reaction and reactive extrusion as the facile strategy to prepare sustainable and biodegradable TPS/OCNC bionanocomposites with properties more suitable for daily applications to replace petroleum-based plastic and eliminated the pollution of “microplastics.”


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Young-Rok Seo ◽  
Sang-U Bae ◽  
Jaegyoung Gwon ◽  
Qinglin Wu ◽  
Birm-June Kim

Polylactic acid (PLA)/polybutylene succinate (PBS)/wood flour (WF) biocomposites were fabricated by in situ reactive extrusion with coupling agents. Methylenediphenyl 4,4’-diisocyanate (MDI) and maleic anhydride (MA) were used as coupling agents. To evaluate the effects of MDI and MA, various properties (i.e., interfacial adhesion, mechanical, thermal, and viscoelastic properties) were investigated. PLA/PBS/WF biocomposites without coupling agents revealed poor interfacial adhesion leading to deteriorated properties. However, the incorporation of MDI and/or MA into biocomposites showed high performances by increasing interfacial adhesion. For instance, the incorporation of MDI resulted in improved tensile, flexural, and impact strengths and an increase in tensile and flexural modulus was observed by the incorporation of MA. Specially, remarkably improved thermal stability was found in the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA. Also, the addition of MDI or MA into biocomposites increased the glass transition temperature and crystallinity, respectively. For viscoelastic property, the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA achieved significant enhancement in storage modulus compared to biocomposites without coupling agents. Therefore, the most balanced performances were evident in the PLA/PBS/WF biocomposites with the hybrid incorporation of small quantities of MDI and MA.


ACS Omega ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 15257-15267
Author(s):  
Dajiang Zhao ◽  
Dongguang Yan ◽  
Xubing Fu ◽  
Na Zhang ◽  
Guisheng Yang

2008 ◽  
Vol 48 (9) ◽  
pp. 1747-1754 ◽  
Author(s):  
Jean-Marie Raquez ◽  
Yogaraj Nabar ◽  
Ramani Narayan ◽  
Philippe Dubois

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Eun-Yeob Choi ◽  
Kiho Kim ◽  
Chang-Keun Kim ◽  
Eunah Kang
Keyword(s):  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1152-C1152
Author(s):  
Pierre Le Magueres ◽  
Angela Criswell ◽  
Joseph Ferrara

As crystallographers face increasing problems with crystallizing new proteins, in-situ screening in crystallization trays at room temperature is experiencing a renaissance. It saves a lot of time when screening large numbers of crystallization hits and it helps avoid crystal damage caused by human manipulation error (harsh manual handling, bad freezing) or changes in crystal properties (dehydration, wrong cryo-conditions). In certain cases, it is also possible to go beyond screening and collect enough data for structure solution, especially on an X-ray home source where a less intense beam helps minimize the devastations of radiation damage occurring at room temperature. The Rigaku PlateMate has proved itself as an efficient and easy-to-use in-situ screening tool on the field for the past two years. It is as easily mounted on a goniometer as a regular goniometer head and thanks to a plate adapter with SBS footprints, it accommodates most 96-wells plate types, from sitting and hanging drop to LCP plates. In addition, thanks to its narrow dimensions and aided by software to prevent collisions with the detector and the crystal viewing camera, the PlateMate can be used to easily collect data from crystals in situ. In this work, we present structure solution results obtained from data collected with the PlateMate on crystals from various proteins (native crystals or containing gold or iodine) and using one or multiple crystals to make up a complete data set.


Sign in / Sign up

Export Citation Format

Share Document