scholarly journals Structure determination from in situ diffraction with the Rigaku PlateMate

2014 ◽  
Vol 70 (a1) ◽  
pp. C1152-C1152
Author(s):  
Pierre Le Magueres ◽  
Angela Criswell ◽  
Joseph Ferrara

As crystallographers face increasing problems with crystallizing new proteins, in-situ screening in crystallization trays at room temperature is experiencing a renaissance. It saves a lot of time when screening large numbers of crystallization hits and it helps avoid crystal damage caused by human manipulation error (harsh manual handling, bad freezing) or changes in crystal properties (dehydration, wrong cryo-conditions). In certain cases, it is also possible to go beyond screening and collect enough data for structure solution, especially on an X-ray home source where a less intense beam helps minimize the devastations of radiation damage occurring at room temperature. The Rigaku PlateMate has proved itself as an efficient and easy-to-use in-situ screening tool on the field for the past two years. It is as easily mounted on a goniometer as a regular goniometer head and thanks to a plate adapter with SBS footprints, it accommodates most 96-wells plate types, from sitting and hanging drop to LCP plates. In addition, thanks to its narrow dimensions and aided by software to prevent collisions with the detector and the crystal viewing camera, the PlateMate can be used to easily collect data from crystals in situ. In this work, we present structure solution results obtained from data collected with the PlateMate on crystals from various proteins (native crystals or containing gold or iodine) and using one or multiple crystals to make up a complete data set.

Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2012 ◽  
Vol 512-515 ◽  
pp. 1511-1515
Author(s):  
Chun Lin Zhao ◽  
Li Xing ◽  
Xiao Hong Liang ◽  
Jun Hui Xiang ◽  
Fu Shi Zhang ◽  
...  

Cadmium sulfide (CdS) nanocrystals (NCs) were self-assembled and in-situ immobilized on the dithiocarbamate (DTCs)-functionalized polyethylene glycol terephthalate (PET) substrates between the organic (carbon disulfide diffused in n-hexane) –aqueous (ethylenediamine and Cd2+ dissolved in water) interface at room temperature. Powder X-ray diffraction measurement revealed the hexagonal structure of CdS nanocrystals. Morphological studies performed by scanning electron microscopy (SEM) and high-resolution transmission electron microscope (HRTEM) showed the island-like structure of CdS nanocrystals on PET substrates, as well as energy-dispersive X-ray spectroscopy (EDS) confirmed the stoichiometries of CdS nanocrystals. The optical properties of DTCs modified CdS nanocrystals were thoroughly investigated by ultraviolet-visible absorption spectroscopy (UV-vis) and fluorescence spectroscopy. The as-prepared DTCs present intrinsic hydrophobicity and strong affinity for CdS nanocrystals.


2016 ◽  
Vol 850 ◽  
pp. 191-196 ◽  
Author(s):  
Wei Wang ◽  
Cun Lei Zou ◽  
Ren Geng Li ◽  
Wen Wen ◽  
Hui Jun Kang ◽  
...  

In situ synchrotron X-ray diffraction was used to study a deformed Cu-0.88 Fe-0.24 P alloy during heating process. The measurements were performed at room temperature and also at high temperatures up to 893 K in order to determine the recovery, ageing and recrystallization process. With the increase of temperature, the angles of copper matrix peaks moved left and the FWHM (full width at half maximum) decreased slightly. Fe3P precipitates were first detected at 533 K, reached the maximum at 673 K, and re-dissolved into matrix at 853 K. A dramatic decrease in FWHM was observed accompanied by the precipitation of Fe3P phases, indicating the reduction of lattice distortion of copper matrix.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


2014 ◽  
Vol 70 (a1) ◽  
pp. C500-C500
Author(s):  
Yusuke Yamada ◽  
Naohiro Matsugaki ◽  
Masahiko Hiraki ◽  
Ryuichi Kato ◽  
Toshiya Senda

Crystallization trial is one of the most important but time-consuming steps in macromolecular crystallography. Once a crystal appears in a certain crystallization condition, the crystal is typically harvested from the crystallization drop, soaked into a cryoprotection buffer, flash-cooled with a liquid nitrogen or cold gas flow and finally evaluated its diffraction quality by an X-ray beam. During these long process, crystal may be damaged and the result from the diffraction experiment does not necessarily reflect a nature of the crystal. On in-situ diffraction experiment, where a crystal in a crystallization drop is directly irradiated to an X-ray beam, a diffraction image from a crystal without any external factors such as harvesting and cryoprotection and, as a result, a nature of crystal can be evaluated quickly. In the Photon Factory, a new table-top diffractometer for in-situ diffraction experiments has been developed. It consists of XYZ translation stages with a plate handler, on-axis viewing system with a large numeric aperture and a plate rack where ten crystallization plates can be placed. These components sit on a common plate and it is placed on the existing diffractometer table in the beamline endstation. The CCD detector with a large active area and a pixel array detector with a small active area are used for acquiring diffraction images from crystals. Dedicated control software and user interface were also developed. Since 2014, user operation of the new diffractometer was started and in-situ diffraction experiments were mainly performed for evaluations of crystallization plates from a large crystallization screening project in our facility. BL-17A [1], one of micro-focus beamlines at the Photon Factory, is planned to be upgraded in March 2015. With this upgrade, a new diffractometer, which has a capability to handle a crystallization plate, will be installed so that diffraction data sets from crystals in crystallization drop can be collected.


1995 ◽  
Vol 10 (3) ◽  
pp. 173-177 ◽  
Author(s):  
P. Ballirano ◽  
A. Maras ◽  
R. Caminiti ◽  
C. Sadun

New powder X-ray data for cancrinite [ideally Na8Si6Al6O24 (CO3)2·2 H2O] are reported along with in-situ real-time thermal processes recorded using energy dispersive X-ray diffractometry (EDXD). A completely anhydrous phase is obtained after heating the sample up to 600 °C and quickly cooling it to room temperature, as shown by means of both Rietveld analysis and IR spectroscopy. The anhydrous phase does not show any tendency to re-acquire molecular water. During the heating process, at around 450 °C, a peak splitting is observed, possibly due to a reversible phase transition.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 202
Author(s):  
Miranda Martinez ◽  
Anil R. Chourasia

The Ti/SnO2 interface has been investigated in situ via the technique of x-ray photoelectron spectroscopy. Thin films (in the range from 0.3 to 1.1 nm) of titanium were deposited on SnO2 substrates via the e-beam technique. The deposition was carried out at two different substrate temperatures, namely room temperature and 200 °C. The photoelectron spectra of tin and titanium in the samples were found to exhibit significant differences upon comparison with the corresponding elemental and the oxide spectra. These changes result from chemical interaction between SnO2 and the titanium overlayer at the interface. The SnO2 was observed to be reduced to elemental tin while the titanium overlayer was observed to become oxidized. Complete reduction of SnO2 to elemental tin did not occur even for the lowest thickness of the titanium overlayer. The interfaces in both the types of the samples were observed to consist of elemental Sn, SnO2, elemental titanium, TiO2, and Ti-suboxide. The relative percentages of the constituents at the interface have been estimated by curve fitting the spectral data with the corresponding elemental and the oxide spectra. In the 200 °C samples, thermal diffusion of the titanium overlayer was observed. This resulted in the complete oxidation of the titanium overlayer to TiO2 upto a thickness of 0.9 nm of the overlayer. Elemental titanium resulting from the unreacted overlayer was observed to be more in the room temperature samples. The room temperature samples showed variation around 20% for the Ti-suboxide while an increasing trend was observed in the 200 °C samples.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


Sign in / Sign up

Export Citation Format

Share Document