Potential use of lactic acid bacteria Leuconostoc mesenteroides as a probiotic for the removal of Pb(II) toxicity

2017 ◽  
Vol 55 (4) ◽  
pp. 296-303 ◽  
Author(s):  
Young-Joo Yi ◽  
Jeong-Muk Lim ◽  
Suna Gu ◽  
Wan-Kyu Lee ◽  
Eunyoung Oh ◽  
...  
2021 ◽  
Vol 9 (5) ◽  
pp. 1044
Author(s):  
Jeong A Kim ◽  
Geun Su Kim ◽  
Se Mi Choi ◽  
Myeong Seon Kim ◽  
Do Young Kwon ◽  
...  

Hardening of cheese is one of major issues that degrade the quality of Home Meal Replacement (HMR) foods containing cheese such as Cheese-ddukbokki rice cake (CD, stir-fried rice cakes with shredded cheese). The quality of cheese, such as pH, proteolytic, and flavor properties, depends on various lactic acid bacteria (LAB) used in cheese fermentation. The hardening of cheese is also caused by LAB. In this study, various LAB strains were isolated from CD samples that showed rapid hardening. The correlation of LAB with the hardening of cheese was investigated. Seven of the CD samples with different manufacturing dates were collected and tested for hardening properties of cheese. Among them, strong-hardening of cheese was confirmed for two samples and weak-hardening was confirmed for one sample. All LAB in two strong-hardening samples and 40% of LAB in one weak-hardening sample were identified as Latilactobacillus curvatus. On the other hand, most LAB in normal cheese samples were identified as Leuconostoc mesenteroides and Lactobacillus casei. We prepared cheese samples in which L. curvatus (LC-CD) and L. mesenteroides (LM-CD) were most dominant, respectively. Each CD made of the prepared cheese was subjected to quality test for 50 days at 10 °C. Hardening of cheese with LC-CD dominant appeared at 30 days. However, hardening of cheese with LM-CD dominant did not appear until 50 days. The pH of the LC-CD was 5.18 ± 0.04 at 30 days, lower than that of LM-CD. The proteolytic activity of LC-CD sample was 2993.67 ± 246.17 units/g, higher than that of LM-CD sample (1421.67 ± 174.5 units/g). These results indicate that high acid production and high protease activity of L. curvatus might have caused hardening of cheese.


1971 ◽  
Vol 34 (11) ◽  
pp. 521-525 ◽  
Author(s):  
J. R. Stamer ◽  
B. O. Stoyla ◽  
B. A. Dunckel

The effects of pH values and NaCl concentrations on the growth rates of five species of lactic acid bacteria commonly associated with the sauerkraut fermentation were determined in filter-sterilized cabbage juice. Growth rates of all cultures, with the exception of Pediococcus cerevisiae, were retarded by addition of salt, lower pH, or interaction of both pH and salt. Based upon lag and generation times, P. cerevisiae was the culture most tolerant to the pH and salt concentration employed, whereas Streptococcus faecalis was the most sensitive species. Of the heterofermentative cultures, Lactobacillus brevis was less subject to growth inhibition than Leuconostoc mesenteroides. Under conditions simulating those found during the initial phases of the sauerkraut fermentation (2.25% salt, pH 6.2), L. mesenteroides displayed the shortest lag and generation times of all cultures examined. This rapid growth rate coupled with a marked accelerated death rate may explain, in part, the reason this species is both the first to dominate and the first to die during the early phases of the sauerkraut fermentation. Although cabbage juice previously fermented by L. mesenteroides appears to inhibit growth of P. cerevisiae, it had no apparent inhibitory or stimulatory effects on the other cultures.


2018 ◽  
Vol 366 (Supplement_1) ◽  
pp. i10-i16
Author(s):  
Jun Chen ◽  
Mike Vestergaard ◽  
Jing Shen ◽  
Christian Solem ◽  
Martin Dufva ◽  
...  

ABSTRACT Strain development is frequently used to improve the performance and functionality of industrially important microbes. As traditional mutagenesis screen is especially utilized by the food industry to improve strains used in food fermentation, high-throughput and cost-effective screening tools are important in mutant selection. The emerging droplet-based microfluidics technology miniaturizes the volume for cell cultivation and phenotype interrogation down to the picoliter scales, which facilitates screening of microbes for improved phenotypical properties tremendously. In this mini review, we present recent application of the droplet-based microfluidics in microbial strain improvement with a focus on its potential use in the screening of lactic acid bacteria.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Manel Ziadi ◽  
Taroub Bouzaiene ◽  
Sana M’Hir ◽  
Kaouther Zaafouri ◽  
Ferid Mokhtar ◽  
...  

Exopolysaccharides (EPS) produced by three Lactic Acid Bacteria strains,Lactococcus lactisSLT10,Lactobacillus plantarumC7, andLeuconostoc mesenteroidesB3, were isolated using two methods: ethanol precipitation (EPS-ETOH) and ultrafiltration (EPS-UF) through a 10 KDa cut-off membrane. EPS recovery by ultrafiltration was higher than ethanol precipitation forLactococcus lactisSLT10 andLactobacillus plantarumC7. However, it was similar with both methods forLeuconostoc mesenteroidesB3. The monomer composition of the EPS fractions revealed differences in structures and molar ratios between the two studied methods. EPS isolated fromLactococcus lactisSLT10 are composed of glucose and mannose for EPS-ETOH against glucose, mannose, and rhamnose for EPS-UF. EPS extracted fromLactobacillus plantarumC7 andLeuconostoc mesenteroidesB3 showed similar composition (glucose and mannose) but different molar ratios. The molecular weights of the different EPS fractions ranged from 11.6±1.83 to 62.4±2.94 kDa. Molecular weights of EPS-ETOH fractions were higher than those of EPS-UF fractions. Fourier transform infrared (FTIR) analysis revealed a similarity in the distribution of the functional groups (O-H, C-H, C=O, -COO, and C-O-C) between the EPS isolated from the three strains.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1582
Author(s):  
Ruby Stella Lucumi-Banguero ◽  
Cristina Ramírez-Toro ◽  
German A. Bolívar

The biopreservation of meat products is of great interest due to the demand for products with low or minimal chemical additives. Lactic acid bacteria (LAB) have been used as protective cultures for many centuries. The objective of this work was to characterize 10 native LAB isolated from meat masses with biopreservative potential for meat products. The isolates were subjected to viability tests with different concentrations of NaCl, nitrite, and nitrate salts, pHs, and temperature conditions. Antibiotic resistance and type of lactic acid isomer were tested. In addition, the isolates were tested against seven pathogens, and inhibitory substances were identified by diffusion in agar wells. Finally, two isolates, Lb. plantarum (SB17) and Lb. sakei (SB3) were tested as protective cultures of chorizo in a model. As a result, the viability at different concentrations of NaCl and nitrate and nitrate salts were obtained. pH and temperature exerted a negative effect on the growth of some of the isolates. Pathogens were inhibited mainly by the presence of organic acids; P. aurius was the most susceptible, and S. typhimurium and S. marcescens were the most resistant. The strains SB17 and SB3 had similar effects on chorizo, and time exerted a deleterious effect on microbiological quality and pH. The results indicated that the 10 isolates show promising characteristics for the preservation of cooked meat products, with the strain Lb. plantarum (SB17) being the most promising.


Author(s):  
Anik Ma'unatin ◽  
Harijono Harijono ◽  
Elok Zubaidah ◽  
Muhaimin Rifa'i

Background and Objectives: Lontar (Borassus flabellifer L.) is widely grown in Indonesia and one of its products is palm sap. Palm sap contains a high level of sugar, making it suitable as a medium to increase the lactic acid bacteria (LAB) production of exopolysaccharides (EPS). This study aimed to isolate the EPS-producing LAB from palm sap and evaluate its EPS production. LAB isolation was carried out on MRS agar containing 0.5% CaCO3 . Materials and Methods: The screening and production of EPS were carried out on MRS media supplemented with 10% sucrose. The molecular identification of the selected EPS-producing LAB was based on 16S rDNA. A quantitative analysis of EPS polymer dry mass and total sugar was conducted using one-way ANOVA. Results: In this study, five EPS-producing LABs were found: Fructobacillus fructosus N4, Leuconostoc mesenteroides N5, Leuconostoc mesenteroides N7, Leuconostoc mesenteroides N9, and Fructobacillus fructosus N10. The highest EPS yield in liquid media was 10.997 ± 1.591 g/L by Leuconostoc mesenteroides N7, whereas the lowest was 4.505 ± 0.459 g/L by Fructobacillus fructosus N10. Conclusion: This study found Fructobacillus fructosus strains as EPS producers that have never been reported before.


2015 ◽  
Vol 27 (10) ◽  
pp. 784 ◽  
Author(s):  
Wafa Souid ◽  
Saliha BoudjenahHaroun ◽  
Oum Siboukeur ◽  
Abderrahmane Mati

2022 ◽  
Author(s):  
Alganesh Tola Gemechu ◽  
Yetenayet Bekele Tola ◽  
ZERIHUN A. BIRRU ◽  
Grace Delia R ◽  
Jasna Kovac ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 288 ◽  
Author(s):  
Nguyen Tu ◽  
Nghe Dat ◽  
Le Canh ◽  
Doan Vinh

Screening for compounds that can neutralize the toxicity of tetrodotoxin (TTX) or reduce its negative effects is necessary. Our study tested the TTX detoxification capacity of exopolysaccharide (EPS) extracted from lactic acid bacteria. EPS of Leuconostoc mesenteroides N3 isolated from the Vung Tau sea (Vietnam), Lactobacillus plantarum PN05, and Lactobacillus rhamnosus PN04 were used in the study. To more completely evaluate the importance of EPS in detoxification, EPS samples of Leuconostoc mesenteroides N3, Lactobacillus plantarum PN05 and Lactobacillus rhamnosus PN04 were also tested. The majority of EPS of these bacteria contained glucose; this was observed using thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis. As observed with FTIR analysis, only EPS of Lactobacillus plantarum PN05 contained methyl groups. The results indicated that detoxification of TTX in mice could be obtained at an optimal dose of 248 µg EPS from Leuconostoc mesenteroides incubated with 54 µg cuprous oxide for 40 min or 148 µg EPS Lactobacillus rhamnosus incubated with 55 µg cuprous oxide for 40 min, while EPS from Lactobacillus plantarum showed TTX detoxification capacity without cuprous oxide combination. Consequently, EPS from Lactobacillus plantarum PN05 can be used in TTX prevention. This is the first report on the importance of lactic acid bacteria in TTX detoxification.


Sign in / Sign up

Export Citation Format

Share Document