ethanol precipitation
Recently Published Documents


TOTAL DOCUMENTS

150
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Ajay Iyer ◽  
Lisa Guerrier ◽  
Salomé Leveque ◽  
Charles S. Bestwick ◽  
Sylvia H. Duncan ◽  
...  

AbstractInvasive plants offer an interesting and unconventional source of protein and the considerable investment made towards their eradication can potentially be salvaged through their revalorisation. To identify viable sources, effective and high-throughput screening methods are required, as well as efficient procedures to isolate these components. Rigorous assessment of low-cost, high-throughput screening assays for total sugar, phenolics and protein was performed, and ninhydrin, Lever and Fast Blue assays were found to be most suitable owing to high reliability scores and false positive errors less than 1%. These assays were used to characterise invasive Scottish plants such as Gorse (Ulex europeans), Broom (Cystisus scoparius) and Fireweed (Chamaenerion angustifolium). Protein extraction (alkali-, heat- and enzyme assisted) were tested on these plants, and further purification (acid and ethanol precipitation, as well as ultrafiltration) procedures were tested on Gorse, based on protein recovery values. Cellulase treatment and ethanol precipitation gave the highest protein recovery (64.0 ± 0.5%) and purity (96.8 ± 0.1%) with Gorse. The amino acid profile of the purified protein revealed high levels of essential amino acids (34.8 ± 0.0%). Comparison of results with preceding literature revealed a strong association between amino acid profiles and overall protein recovery with the extraction method employed. The final purity of the protein concentrates was closely associated to the protein content of the initial plant mass. Leaf protein extraction technology can effectively raise crop harvest indices, revalorise underutilised plants and waste streams.


Separations ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 181
Author(s):  
Yanni Tai ◽  
Jingjing Pan ◽  
Haibin Qu ◽  
Xingchu Gong

(1) Background: Ethanol precipitation is widely used in the manufacturing traditional Chinese medicines (TCMs). Insufficient mixing of ethanol solution and concentrate usually results in the coating loss of active ingredients. However, there is no index for quantitative evaluation of the mixing in ethanol precipitation. Therefore, this study aimed to define an index for quantitative evaluation of the mixing effect in ethanol precipitation of TCMs. (2) Methods: The concept and requirements of a mixing indicator were proposed. The mass percentage of concentrate fully mixed with ethanol solution (well-mixing ratio, WMR) was used as an index to evaluate the mixing effect. The formula for calculation of WMR was derived. The utility of the WMR was evaluated on stirring devices and a micromesh mixer. (3) Results: Increasing stirring speed, decreasing total solid content of the concentrate, and decreasing the diameter of the ethanol solution droplets all resulted in higher retention rates for lobetyolin and higher WMR. The WMR increased with the increasing flow rate of the concentrate and ethanol solution in the micromesh mixer. The mixing of ethanol solution and concentrate was better when using a micromesh mixer with a smaller internal mixing zone. The results revealed that WMR could be used to quantitatively characterize the mixing of concentrate and ethanol solution, although it has some limitations. (4) Conclusions: The proposed index WMR could guide quality control of the TCM ethanol precipitation process. This study represents a new contribution to improving ethanol precipitation equipment, optimizing process parameters, and enhanced properties of concentrate for TCM enterprises.


ACS Omega ◽  
2021 ◽  
Vol 6 (38) ◽  
pp. 25010-25018
Author(s):  
Ziying Yang ◽  
Yajie Hu ◽  
Panpan Yue ◽  
Hongdan Luo ◽  
Qisui Li ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3777
Author(s):  
Yuemei Ye ◽  
Jingwen Sun ◽  
Liting Wang ◽  
Junwang Zhu ◽  
Wei Cui ◽  
...  

As an abundant marine xanthophyll, fucoxanthin (FX) exhibits a broad range of biological activities. The preparation of high-purity FX is in great demand, however, most of the available methods require organic solvents which cannot meet the green chemistry standard. In the present study, a simple and efficient purification approach for the purification of FX from the brown seaweed Sargassum horneri was carried out. The FX-rich ethanol extract was isolated by octadecylsilyl (ODS) column chromatography using ethanol–water solvent as a gradient eluent. The overwhelming majority of FX was successfully eluted by the ethanol–water mixture (9:1, v/v), with a recovery rate of 95.36%. A parametric study was performed to optimize the aqueous ethanol precipitation process by investigating the effects on the purity and recovery of FX. Under the optimal conditions, the purity of FX was 91.07%, and the recovery rate was 74.98%. Collectively, the eco-friendly method was cost-efficient for the purification of FX. The developed method provides a potential approach for the large-scale production of fucoxanthin from the brown seaweed Sargassum horneri.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252811
Author(s):  
Takumi Tanaka ◽  
Ken Suzuki ◽  
Hirokazu Ueda ◽  
Yuka Sameshima-Yamashita ◽  
Hiroko Kitamoto

Biodegradable plastics must be sufficiently stable to maintain functionality during use but need to be able to degrade rapidly after use. We previously reported that treatment with an enzyme named PaE, secreted by the basidiomycete yeast Pseudozyma antarctica can speed up this degradation. To facilitate the production of large quantities of PaE, here, we aimed to elucidate the optimal conditions of ethanol treatment for sterilization of the culture supernatant and for concentration and stabilization of PaE. The results showed that Pseudozyma antarctica completely lost its proliferating ability when incubated in ≥20% (v/v) ethanol. When the ethanol concentration was raised to 90% (v/v), PaE formed a precipitate; however, its activity was restored completely when the precipitate was dissolved in water. To reduce ethanol use, PaE was successfully concentrated and recovered by sequential ammonium sulfate precipitation and ethanol precipitation steps. Over 90% of the activity in the original culture supernatant was recovered and the specific activity was increased 3.4-fold. By preparing the enzyme solution at a final concentration of 20% (v/v) ethanol, about 60% of the initial activity was maintained at ambient temperature for over 6 months without growth of microbes. We conclude that ethanol treatment is effective for sterilization, concentration, and stabilization of PaE, and that concentrating PaE by sequential ammonium sulfate precipitation and ethanol precipitation substantially increases the PaE purity and decreases ethanol use.


Separations ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 74
Author(s):  
Yanni Tai ◽  
Haibin Qu ◽  
Xingchu Gong

The optimization of process parameters in the pharmaceutical industry is often carried out according to the Quality by Design (QbD) concept. QbD also emphasizes that continuous improvement should be performed in life cycle management. Process parameters that are difficult to control in actual production can be regarded as noise parameters. In this study, based on the QbD concept, the ethanol precipitation process of Carthami Flos extract was optimized, considering a noise parameter. The density of the concentrated extract, ethanol concentration, the volume ratio of ethanol to concentrated extract, stirring time after ethanol addition, and refrigeration temperature were selected as critical process parameters (CPPs), using a definitive screening design. The mathematical models among CPPs and evaluation indicators were established. Considering that the refrigeration temperature of industrial ethanol precipitation is often difficult to control with seasonal changes, refrigeration temperature was treated as a noise parameter. A calculation method for the design space in the presence of the noise parameter was proposed. The design space was calculated according to the probability of reaching the standards of evaluation indicators. Controlling parameters within the design space was expected to reduce the influence of noise parameter fluctuations on the quality of the ethanol precipitation supernatant. With more data obtained, the design space was updated. In industry, it is also recommended to adopt a similar idea: that is, continuing to collect industrial data and regularly updating mathematical models, which can further update the design space and make it more stable and reliable.


Author(s):  
Xin Li ◽  
Qiannan Zhang ◽  
Wei Wang ◽  
Shang-Tian Yang

Inulin is a kind of polysaccharide that can be obtained various biomass. Inulooligosaccharides (IOS), a kind of oligosaccharides that can be obtained from inulin by enzymatic hydrolysis using inulinases, have been regarded as the functional food ingredients. Commercially available inulinases produced by natural Aspergillus niger contained both endo- and exo-inulinase activities. For IOS production from inulin, it is desirable to use only endo-inulinase as exo-inulinase would produce mainly the monosacchairde fructose from inulin. In the present study, a simple inulin-mediated ethanol precipitation method was developed to separate endo- and exo-inulinases present in natural inulinases. IOS production from inulin using the enriched endo-inulinase was then optimized in process conditions including pH and temperature, achieving a high yield of ∼94%. The resultant IOS products had a degree of polymerization ranging from 2 to 7. The study demonstrated a novel method for obtaining partially purified or enriched endo-inulinase for IOS production from inulin in an efficient process.


2021 ◽  
Author(s):  
Yanni Tai ◽  
Haibin Qu ◽  
Xingchu Gong

Abstract Background The optimization of process parameters in the pharmaceutical industry is often carried out according to the Quality by Design (QbD) concept. QbD also emphasizes that continuous improvement should be performed in life cycle management. Process parameters that are difficult to control in actual production could be regarded as noise parameters. In this study, a noise parameter was considered, an example of continuous improvement in the design space was provided. Methods The ethanol precipitation process of Carthami Flos (Honghua) extract was optimized based on the QbD concept. The critical process parameters (CPPs) were identified using a definitive screening design. Considering that the refrigeration temperature of industrial ethanol precipitation is often difficult to control with seasonal changes, the refrigeration temperature was treated as a noise parameter. The design space was then calculated using an exhaustive search-Monte Carlo method. The mathematical models were reestablished when more data were obtained and then the calculated probabilities of reaching the process standards were updated. Results The calculation procedure of design space based on an exhaustive search-Monte Carlo method was proposed. The density of the concentrated extract, ethanol concentration, the volume ratio of ethanol to concentrated extract, stirring time after ethanol addition, and refrigeration temperature were selected as CPPs. The mathematical models of CPPs and evaluation indicators were established, and the coefficient of determination of each model was greater than 0.81. The predictive performance of the models was good. After continuous improvement, the recalculated probability values were more reliable, the design space became larger. Conclusions The calculation of design space and the continuous improvement strategy considering a noise parameter was developed. In industrial production, it is also recommended to adopt this similar idea, that is, continuing to collect industrial data and regularly updating the mathematical models, which can further update the design space and make it more stable and reliable.


Sign in / Sign up

Export Citation Format

Share Document