Computational analysis of the extrusion process of fused deposition modeling of acrylonitrile-butadiene-styrene

Author(s):  
Nafiseh Shadvar ◽  
Ehsan Foroozmehr ◽  
Mohsen Badrossamay ◽  
Iman Amouhadi ◽  
Alireza Shojaei Dindarloo
Author(s):  
Dominic Thaler ◽  
Nahal Aliheidari ◽  
Amir Ameli

Additive manufacturing is an emerging method to produce customized parts with functional materials without big investments. As one of the common additive manufacturing methods, fused deposition modeling (FDM) uses thermoplastic-based feedstock. It has been recently adapted to fabricate composite materials too. Acrylonitrile butadiene styrene (ABS) is the most widely used material as FDM feedstock. However, it is an electrically insulating polymer. Carbon Nanotubes (CNTs) on the other hand are highly conductive. They are attractive fillers because of their high aspect ratio, and excellent mechanical and physical properties. Therefore, a nanocomposite of these two materials can give an electrically conductive material that is potentially compatible with FDM printing. This work focuses on the investigation of the relationships between the FDM process parameters and the electrical conductivity of the printed ABS/CNT nanocomposites. Nanocomposite filaments with CNT contents up to 10wt% were produced using a twin-screw extruder followed by 3D printing using FDM method. The starting material was pellets from a masterbatch containing 15 wt% CNT. Compression-molded samples of ABS/CNT were also prepared as the bulk baselines. The effects of CNT content and nozzle size on the through-layer and in-layer electrical conductivity of the printed nanocomposites were analyzed. Overall, a higher percolation threshold was observed in the printed samples, compared to that of the compression-molded counterparts. This resulted in the conductivity of the printed samples that is at least one order of magnitude lower. Moreover, at CNT contents up to 5 wt%, the in-layer conductivity of the printed samples was almost two orders of magnitudes higher than that in the through-layer direction. In ABS/3 wt% CNT samples, the through-layer conductivity continuously decreased as the nozzle diameter was decreased from 0.8 mm to 0.35 mm. These variations in the electrical conductivity were explained in terms of the CNT alignment, caused by the extrusion process during the print, quality of interlayer bonding during deposition, and the voids created due to the discrete nature of the printing process.


Author(s):  
Shajahan Bin Maidin ◽  
Zulkeflee Abdullah ◽  
Ting Kung Hieng

One of the disadvantages of fused deposition modeling (FDM) is waste produced during the printing processes. This investigation focuses on using 100% recycled Acrylonitrile Butadiene Styrene (ABS) for the FDM process. The recycling begins with re-granule the waste ABS material and produces it into a new filament. The new recycled filament was used to print the test specimen. Investigation on the mechanical properties and the surface quality of the test specimen and comparison with standard ABS specimen was done. The result shows that the recycled ABS can be produced into filament with 335°C of extrusion temperature and 1.5 mm/s travel speed of the extruder conveyor. The surface roughness of recycled specimen is 6.94% higher than the standard ABS specimen. For ultimate tensile strength, there is a small difference in X and Y orientation between the standard and the recycled ABS specimen which are 22.93% and 19.98%, respectively. However, in Z orientation, it is 52.33% lower. This investigation proves that ABS can be recycled without significantly affecting its mechanical properties.


2016 ◽  
Vol 11 ◽  
pp. 49-59 ◽  
Author(s):  
Jaret C. Riddick ◽  
Mulugeta A. Haile ◽  
Ray Von Wahlde ◽  
Daniel P. Cole ◽  
Oluwakayode Bamiduro ◽  
...  

Author(s):  
Tran Linh Khuong ◽  
Zhao Gang ◽  
Muhammad Farid ◽  
Rao Yu ◽  
Zhuang Zhi Sun ◽  
...  

Biomimetic robots borrow their structure, senses and behavior from animals, such as humans or insects, and plants. Biomimetic design is design ofa machine, a robot or a system in engineeringdomain thatmimics operational and/orbehavioral model of a biological system in nature. 3D printing technology has another name as rapid prototyping technology. Currently it is being developed fastly and widely and is applied in many fields like the jewelry, footwear, industrial design, architecture, engineering and construction, automotive, aerospace, dental and medical industry, education, geographic information system, civil engineering, guns. 3D printing technology is able to manufacture complicated, sophisticated details that the traditional processing method cannot manufacture. Therefore, 3D printing technology can be seen as an effective tool in biomimetic, which can accurately simulate most of the biological structure. Fused Deposition Modeling (FDM) is a technology of the typical rapid prototyping. The main content of the article is the focusing on tensile strength test of the ABS-Acrylonitrile Butadiene Styrene material after using Fused Deposition Modeling (FDM) technology, concretization after it’s printed by UP2! 3D printer. The article focuses on two basic features which are Tensile Strength and Determination of flexural properties.


2017 ◽  
Vol 54 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Roxana Miclaus ◽  
Angela Repanovici ◽  
Nadinne Roman

Since the development of 3D printing, over the past decades, the domain of application has evolved significantly! Concerning the orthosis and prosthesis manufacturing, the 3D printing offers many possibilities for developing new medical devices for people with disabilities. Our paper wish to synthetize the main 3D printing methods and the biomaterial properties which can be used in orthosis and prosthesis manufacturing, like polylactic acid or acrylonitrile butadiene styrene. Fused Deposition Modeling and Stereo lithography are most used for medical devices manufacturing and usually using polylactic acid, considering the properties of this polymer and de organic componence.


2014 ◽  
Vol 660 ◽  
pp. 89-93 ◽  
Author(s):  
Nasuha Sa'ude ◽  
Mustaffa Ibrahim ◽  
Mohd Halim Irwan Ibrahim

This paper presents the melt flow behavior (MFB) of an acrylonitrile butadiene styrene (ABS), High Density Polyethlene (HDPE), Polyproplene (PP) and a combination of ABS-Iron in the extrusion process. In this study, the effect MFB of variety's polymers and ABS mix with 10% Iron material was investigated based on the viscosity, density, thermal conductivity, melting temperature and specific heat material properties. The MFB of FDM system was investigated using Finite-Element Analysis (FEA) by ANSYS CFX 12. Based on the result obtained, it was found that, the material velocity increase when the nozzle diameter is smaller than the entrance diameter. The higher temperature distribution along the MFB of ABS mix with 10% Iron is 43.15 K compared with original ABS, which is 539.15K.


Sign in / Sign up

Export Citation Format

Share Document