Role of abscisic acid, osmolytes and heat shock factors in high temperature thermotolerance of Heliotropium thermophilum

2021 ◽  
Vol 27 (4) ◽  
pp. 861-871
Author(s):  
Asiye Sezgin Muslu ◽  
Asim Kadıoğlu
2020 ◽  
Author(s):  
Boopathi Balasubramaniam ◽  
Krishnaswamy Balamurugan

2011 ◽  
Vol 34 (5) ◽  
pp. 738-751 ◽  
Author(s):  
HSIANG-CHIN LIU ◽  
HSIU-TING LIAO ◽  
YEE-YUNG CHARNG

2016 ◽  
Vol 13 (10) ◽  
pp. 7189-7198
Author(s):  
Shuang Gang ◽  
Yufeng Liu ◽  
Tao Lu ◽  
Mingfang Qi ◽  
Xiaoxi Guan ◽  
...  

The present study investigated the role of abscisic acid (ABA) application in photosynthesis, photosystems I and II (PSI and PSII), antioxidant system and ABA-related genes expression under sub-high temperature and high light (STHL) stress. STHL treatment led to an irreversible reduction in the photosynthetic rate (Pn), damaged PSII firstly at three hours, and then inhibited RuBPCase activity at seven hours, at last injured PSI after eleven hours. During 11 hours STHL stress, exogenous ABA can alleviate the degree of Pn decreasing, improve the activity of RuBPCase, protect PSII to photoinhibition, and promote the ability of reactive oxygen removal. When severe stress occured, exogenous ABA has certain effect, but can not ease photoinhibition and photodamage. In addition, exogenous ABA effected significantly on genes of upstream regulatory ABA biosynthesis key enzymes and downstream response MYB transcription factors.


2009 ◽  
Vol 29 (15) ◽  
pp. 4177-4187 ◽  
Author(s):  
Jeremy Chien ◽  
Takayo Ota ◽  
Giovanni Aletti ◽  
Ravi Shridhar ◽  
Mariarosaria Boccellino ◽  
...  

ABSTRACT HtrA1 belongs to a family of serine proteases found in organisms ranging from bacteria to humans. Bacterial HtrA1 (DegP) is a heat shock-induced protein that behaves as a chaperone at low temperature and as a protease at high temperature to help remove unfolded proteins during heat shock. In contrast to bacterial HtrA1, little is known about the function of human HtrA1. Here, we report the first evidence that human HtrA1 is a microtubule-associated protein and modulates microtubule stability and cell motility. Intracellular HtrA1 is localized to microtubules in a PDZ (PSD95, Dlg, ZO1) domain-dependent, nocodazole-sensitive manner. During microtubule assembly, intracellular HtrA associates with centrosomes and newly polymerized microtubules. In vitro, purified HtrA1 promotes microtubule assembly. Moreover, HtrA1 cosediments and copurifies with microtubules. Purified HtrA1 associates with purified α- and β-tubulins, and immunoprecipitation of endogenous HtrA1 results in coprecipitation of α-, β-, and γ-tubulins. Finally, downregulation of HtrA1 promotes cell motility, whereas enhanced expression of HtrA1 attenuates cell motility. These results offer an original identification of HtrA1 as a microtubule-associated protein and provide initial mechanistic insights into the role of HtrA1 in theregulation of cell motility by modulating microtubule stability.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1022 ◽  
Author(s):  
Darae Kang ◽  
JinRyong Park ◽  
KwanSeob Shim

This study was conducted to investigate the effects of early heat conditioning on growth performance, liver-specific enzymes (GOT and GPT), neuro-hormones (dopamine and serotonin), stress hormones (corticosterone), and the expression of HSPs (heat shock proteins), HSFs (heat shock factors), and pro-inflammatory cytokines under chronic high temperature. Broilers were raised with commercial feed and supplied with water ad libitum under conventional temperature. We separated the broilers into three groups: the control without any heat exposure (C), chronic heat-stressed group (CH), and early and chronic heat-stressed group (HH). At 5 days of age, the HH group was exposed to high temperatures (40 °C for 24 h), while the remaining groups were raised at a standard temperature. Between days 6 and 20, all three groups were kept under optimal temperature. From 21 to 35 days, the two heat-stressed groups (CH and HH) were exposed to 35 °C. Groups exposed to high temperature (CH and HH) showed significantly lower body weight and feed intake compared to the control. GOT and GPT were lower expressed in the CH and HH groups than the control group. In addition, the protein expressions of HSPs were down-regulated by chronic heat stress (CH and HH groups). The gene expressions of HSP60 and HSF3 were significantly down-regulated in the CH and HH groups, while HSP70 and HSP27 genes were up-regulated only in the HH group compared with the control group. The expression of pro-inflammatory cytokine genes was significantly up-regulated in the HH group compared with the control and CH groups. Thus, exposure of early Heat stress (HS) to broilers may affect the inflammatory response; however, early heat exposure did not have a positive effect on chronic HS of liver enzymes and heat shock protein expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Taehoon Kim ◽  
Shafina Samraj ◽  
Juan Jiménez ◽  
Celina Gómez ◽  
Tie Liu ◽  
...  

Abstract Background Heat shock factors (Hsfs) and Heat shock proteins (Hsps) belong to an essential group of molecular regulators involved in controlling cellular processes under normal and stress conditions. The role of Hsfs and Hsps is well known in model plant species under diverse stress conditions. While plants Hsfs are vital components of the signal transduction response to maintain cellular homeostasis, Hsps function as chaperones helping to maintain folding of damaged and newly formed proteins during stress conditions. In lettuce (Lactuca sativa), a highly consumed vegetable crop grown in the field and in hydroponic systems, the role of these gene families in response to artificial light is not well characterized. Results Using a genome-wide analysis approach, we identified 32 Hsfs and 22 small heat shock proteins (LsHsps) in lettuce, some of which do not have orthologs in Arabidopsis, poplar, and rice. LsHsp60s, LsHsp90s, and LsHsp100s are highly conserved among dicot and monocot species. Surprisingly, LsHsp70s have three times more members than Arabidopsis and two times more than rice. Interestingly, the lettuce genome triplication did not contribute to the increased number of LsHsp70s genes. The large number of LsHsp70s was the result of genome tandem duplication. Chromosomal distribution analysis shows larger tandem repeats of LsHsp70s genes in Chr1, Chr7, Chr8, and Chr9. At the transcriptional level, some genes of the LsHsfs, LsHsps, LsHsp60s, and LsHsp70s families were highly responsive to UV and high intensity light stress, in contrast to LsHsp90s and LsHsp100s which did not respond to a light stimulus. Conclusions Our genome-wide analysis provides a detailed identification of Hsfs and Hsps in lettuce. Chromosomal location and syntenic region analysis together with our transcriptional analysis under different light conditions provide candidate genes for breeding programs aiming to produce lettuce varieties able to grow healthy under hydroponic systems that use artificial light.


Sign in / Sign up

Export Citation Format

Share Document