A claims problem approach to the cost allocation of a minimum cost spanning tree

Author(s):  
José-Manuel Giménez-Gómez ◽  
Josep E. Peris ◽  
Begoña Subiza
2021 ◽  
Vol 28 (2) ◽  
pp. 73-87

We investigate the cost allocation strategy associated with the problem of providing service /communication between all pairs of network nodes. There is a cost associated with each link and the communication between any pair of nodes can be delivered via paths connecting those nodes. The example of a cost efficient solution which could provide service for all node pairs is a (non-rooted) minimum cost spanning tree. The cost of such a solution should be distributed among users who might have conflicting interests. The objective of this paper is to formulate the above cost allocation problem as a cooperative game, to be referred to as a Network Connectivity (NC) game, and develop a stable and efficient cost allocation scheme. The NC game is related to the Minimum Cost Spanning Tree games and to the Shortest Path games. The profound difference is that in those games the service is delivered from some common source node to the rest of the network, while in the NC game there is no source and the service is established through the two-way interaction among all pairs of participating nodes. We formulate Network Connectivity (NC) game and construct an efficient cost allocation algorithm which finds some points in the core of the NC game. Finally, we discuss the Egalitarian Network Cost Allocation (ENCA) rule and demonstrate that it finds an additional core point.


2018 ◽  
Vol 25 (4) ◽  
pp. 28
Author(s):  
Christina Burt ◽  
Alysson Costa ◽  
Charl Ras

We study the problem of constructing minimum power-$p$ Euclidean $k$-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most $k$ additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of $p$ (where $p\geq 1$), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio $\kappa$ of the beaded-MST heuristic satisfies $\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1})$. We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the $p=2$ case.


2012 ◽  
Vol 40 (1) ◽  
pp. 52-55 ◽  
Author(s):  
G. Bergantiños ◽  
M. Gómez-Rúa ◽  
N. Llorca ◽  
M. Pulido ◽  
J. Sánchez-Soriano

Author(s):  
Julio R. Fernández ◽  
Inés Gallego ◽  
Andrés Jiménez-Losada ◽  
Manuel Ordóñez

AbstractCost-allocation problems in a fixed network are concerned with distributing the costs for use by a group of clients who cooperate in order to reduce such costs. We work only with tree networks and we assume that a minimum cost spanning tree network has already been constructed and now we are interested in the maintenance costs. The classic problem supposes that each agent stays for the entire time in the same node of the network. This paper introduces cost-allocation problems in a fixed-tree network with a set of agents whose activity over the nodes is fuzzy. Agent’s needs to pay for each period of time may differ. Moreover, the agents do not always remain in the same node for each period. We propose the extension of a very well-known solution for these problems: Bird’s rule.


2020 ◽  
Vol 54 (6) ◽  
pp. 1775-1791
Author(s):  
Nazila Aghayi ◽  
Samira Salehpour

The concept of cost efficiency has become tremendously popular in data envelopment analysis (DEA) as it serves to assess a decision-making unit (DMU) in terms of producing minimum-cost outputs. A large variety of precise and imprecise models have been put forward to measure cost efficiency for the DMUs which have a role in constructing the production possibility set; yet, there’s not an extensive literature on the cost efficiency (CE) measurement for sample DMUs (SDMUs). In an effort to remedy the shortcomings of current models, herein is introduced a generalized cost efficiency model that is capable of operating in a fuzzy environment-involving different types of fuzzy numbers-while preserving the Farrell’s decomposition of cost efficiency. Moreover, to the best of our knowledge, the present paper is the first to measure cost efficiency by using vectors. Ultimately, a useful example is provided to confirm the applicability of the proposed methods.


2020 ◽  
Vol 23 (10) ◽  
pp. 1182-1194
Author(s):  
A.A. Akhmetzyanov ◽  
A.Yu. Sokolov

Subject. The article focuses on the advanced time-driven tools for allocating overhead expenses, which are based on process-based budgeting. Objectives. We articulate a technique for cost allocation so as to assess the cost of each process with reference to the common time driver. Methods. The study relies upon methods of systematization, classification, analogy and comparison, and summarizes the scientific literature on the subject. Results. The article presents our own suggestions on implementing TD-ABC and TD-ABB into the strategic management accounting process of developer companies. The principles were proved to help more effectively allocate overhead expenses and assess the capacity load of each process performed by functions, departments and employees. Carrying out a comparative analysis, we found certain reserves for utilizing resources more effectively. Conclusions and Relevance. The findings are of scientific and practical significance and can be used by developer and construction businesses. The conclusions can prove helpful for scientific papers, student books, and further research.


2020 ◽  
Vol 26 (3) ◽  
pp. 685-697
Author(s):  
O.V. Shimko

Subject. The study analyzes generally accepted approaches to assessing the value of companies on the basis of financial statement data of ExxonMobil, Chevron, ConocoPhillips, Occidental Petroleum, Devon Energy, Anadarko Petroleum, EOG Resources, Apache, Marathon Oil, Imperial Oil, Suncor Energy, Husky Energy, Canadian Natural Resources, Royal Dutch Shell, Gazprom, Rosneft, LUKOIL, and others, for 1999—2018. Objectives. The aim is to determine the specifics of using the methods of cost, DFC, and comparative approaches to assessing the value of share capital of oil and gas companies. Methods. The study employs methods of statistical analysis and generalization of materials of scientific articles and official annual reports on the results of financial and economic activities of the largest public oil and gas corporations. Results. Based on the results of a comprehensive analysis, I identified advantages and disadvantages of standard approaches to assessing the value of oil and gas producers. Conclusions. The paper describes pros and cons of the said approaches. For instance, the cost approach is acceptable for assessing the minimum cost of small companies in the industry. The DFC-based approach complicates the reliability of medium-term forecasts for oil prices due to fluctuations in oil prices inherent in the industry, on which the net profit and free cash flow of companies depend to a large extent. The comparative approach enables to quickly determine the range of possible value of the corporation based on transactions data and current market situation.


1988 ◽  
Vol 26 (6) ◽  
pp. 291-293 ◽  
Author(s):  
Bruce M. Maggs ◽  
Serge A. Plotkin

Sign in / Sign up

Export Citation Format

Share Document