scholarly journals Real-Time Estimation of Drivers’ Trust in Automated Driving Systems

Author(s):  
Hebert Azevedo-Sa ◽  
Suresh Kumaar Jayaraman ◽  
Connor T. Esterwood ◽  
X. Jessie Yang ◽  
Lionel P. Robert ◽  
...  

Abstract Trust miscalibration issues, represented by undertrust and overtrust, hinder the interaction between drivers and self-driving vehicles. A modern challenge for automotive engineers is to avoid these trust miscalibration issues through the development of techniques for measuring drivers’ trust in the automated driving system during real-time applications execution. One possible approach for measuring trust is through modeling its dynamics and subsequently applying classical state estimation methods. This paper proposes a framework for modeling the dynamics of drivers’ trust in automated driving systems and also for estimating these varying trust levels. The estimation method integrates sensed behaviors (from the driver) through a Kalman filter-based approach. The sensed behaviors include eye-tracking signals, the usage time of the system, and drivers’ performance on a non-driving-related task. We conducted a study ($$n=80$$ n = 80 ) with a simulated SAE level 3 automated driving system, and analyzed the factors that impacted drivers’ trust in the system. Data from the user study were also used for the identification of the trust model parameters. Results show that the proposed approach was successful in computing trust estimates over successive interactions between the driver and the automated driving system. These results encourage the use of strategies for modeling and estimating trust in automated driving systems. Such trust measurement technique paves a path for the design of trust-aware automated driving systems capable of changing their behaviors to control drivers’ trust levels to mitigate both undertrust and overtrust.

2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


2020 ◽  
Vol 11 (4) ◽  
pp. 66
Author(s):  
Nassim Noura ◽  
Loïc Boulon ◽  
Samir Jemeï

To cope with the new transportation challenges and to ensure the safety and durability of electric vehicles and hybrid electric vehicles, high performance and reliable battery health management systems are required. The Battery State of Health (SOH) provides critical information about its performances, its lifetime and allows a better energy management in hybrid systems. Several research studies have provided different methods that estimate the battery SOH. Yet, not all these methods meet the requirement of automotive real-time applications. The real time estimation of battery SOH is important regarding battery fault diagnosis. Moreover, being able to estimate the SOH in real time ensure an accurate State of Charge and State of Power estimation for the battery, which are critical states in hybrid applications. This study provides a review of the main battery SOH estimation methods, enlightening their main advantages and pointing out their limitations in terms of real time automotive compatibility and especially hybrid electric applications. Experimental validation of an online and on-board suited SOH estimation method using model-based adaptive filtering is conducted to demonstrate its real-time feasibility and accuracy.


2013 ◽  
Vol 846-847 ◽  
pp. 26-29
Author(s):  
Xiao Bin Fan ◽  
Pan Deng

In the vehicle stability control and other active safety systems, vehicle sideslip angle real-time estimation is necessary. However, the direct measurement of sideslip angle is more difficult or too costly, so it is often used in estimating methods. The vehicle sideslip angle of closed-loop Luenberger observer and Kalman observer were constructed based on two degrees of freedom bicycle model, as well as the direct integration method for large sideslip angle conditions. The comparative study showed that Kalman filtering estimation method and Luenberger estimation methods have better estimation accuracy in small slip angle range.


Perception ◽  
1993 ◽  
Vol 22 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Dan Zakay

The validity of an attentional model of prospective time estimation was tested in three experiments. In the first experiment two variables were manipulated: (1) nontemporal information processing load during the estimated interval, and (2) time estimation method, ie production of time simultaneously with the performance of a second task, or reproduction of time immediately upon termination of a task whose duration has to be measured. As predicted, a positive relationship between produced time length and information processing load demanded by a simultaneous task, and a negative relationship between reproduced time length and information processing load during the estimated interval, were found. The results were replicated in a second experiment in which verbal estimates of time were also measured and the objective duration of the estimated interval was varied. The pattern of results obtained for verbal estimates was similar to that obtained for reproduced ones. The results of a third experiment indicated that produced and reproduced times were positively correlated with clock time. The results are interpreted as supporting an attentional model of prospective time estimation.


2010 ◽  
Vol 14 (2) ◽  
pp. 54-67 ◽  
Author(s):  
Xuegang Jeff Ban ◽  
Yuwei Li ◽  
Alexander Skabardonis ◽  
J. D. Margulici

Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1578 ◽  
Author(s):  
Hazem Al-Mofleh ◽  
Ahmed Z. Afify ◽  
Noor Akma Ibrahim

In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the new distribution were explored using eight frequentist estimation approaches. These approaches are important for developing guidelines to choose the best method of estimation for the model parameters, which would be of great interest to practitioners and applied statisticians. Detailed numerical simulations are presented to examine the bias and the mean square error of the proposed estimators. The best estimation method and ordering performance of the estimators were determined using the partial and overall ranks of all estimation methods for various parameter combinations. The performance of the proposed distribution is illustrated using two real datasets from the fields of medicine and geology, and both datasets show that the new model is more appropriate as compared to the Marshall–Olkin exponential, exponentiated exponential, beta exponential, gamma, Poisson–Lomax, Lindley geometric, generalized Lindley, and Lindley distributions, among others.


2018 ◽  
Vol 12 (3) ◽  
pp. 639-649 ◽  
Author(s):  
Iman Hajizadeh ◽  
Mudassir Rashid ◽  
Sediqeh Samadi ◽  
Jianyuan Feng ◽  
Mert Sevil ◽  
...  

Background: The artificial pancreas (AP) system, a technology that automatically administers exogenous insulin in people with type 1 diabetes mellitus (T1DM) to regulate their blood glucose concentrations, necessitates the estimation of the amount of active insulin already present in the body to avoid overdosing. Method: An adaptive and personalized plasma insulin concentration (PIC) estimator is designed in this work to accurately quantify the insulin present in the bloodstream. The proposed PIC estimation approach incorporates Hovorka’s glucose-insulin model with the unscented Kalman filtering algorithm. Methods for the personalized initialization of the time-varying model parameters to individual patients for improved estimator convergence are developed. Data from 20 three-days-long closed-loop clinical experiments conducted involving subjects with T1DM are used to evaluate the proposed PIC estimation approach. Results: The proposed methods are applied to the clinical data containing significant disturbances, such as unannounced meals and exercise, and the results demonstrate the accurate real-time estimation of the PIC with the root mean square error of 7.15 and 9.25 mU/L for the optimization-based fitted parameters and partial least squares regression-based testing parameters, respectively. Conclusions: The accurate real-time estimation of PIC will benefit the AP systems by preventing overdelivery of insulin when significant insulin is present in the bloodstream.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Ying Mao ◽  
Xin Jin ◽  
Sunil K. Agrawal

In the past few years, the authors have proposed several prototypes of a Cable-driven upper ARm EXoskeleton (CAREX) for arm rehabilitation. One of the assumptions of CAREX was that the glenohumeral joint rotation center (GH-c) remains stationary in the inertial frame during motion, which leads to inaccuracy in the kinematic model and may hamper training performance. In this paper, we propose a novel approach to estimate GH-c using measurements of shoulder joint angles and cable lengths. This helps in locating the GH-c center appropriately within the kinematic model. As a result, more accurate kinematic model can be used to improve the training of human users. An estimation algorithm is presented to compute the GH-c in real-time. The algorithm was implemented on the latest prototype of CAREX. Simulations and preliminary experimental results are presented to validate the proposed GH-c estimation method.


2012 ◽  
Vol 442 ◽  
pp. 251-255
Author(s):  
Zheng Ying

To estimate the pose of large aircraft component in pose adjustment quickly and accurately, a real-time estimation method based on Unscented Kalman filter (UKF) is proposed. Firstly, in the process of the aircraft component adjustment, a rough value of aircraft component’s pose is acquired by using forward kinematic model and the displacement of positioners on real time. Then, position of a measuring point fixed on aircraft component is obtained by a laser tracker. At last, UKF is employed to integrate the previous rough value and the measuring point position for evaluating the accurate pose of aircraft component. Numerical simulation results show that the presented method is achieved easily, calculated fast and high accurate.


2022 ◽  
Author(s):  
Mengmeng Li

In this paper, we present a metasurface-based Direction of Arrival (DoA) estimation method that exploits the properties of space-time modulated reflecting metasurfaces to estimate in real-time the impinging angle of an illuminating monochromatic plane wave. The approach makes use of the amplitude unbalance of the received fields at broadside at the frequencies of the two first-order harmonics generated by the interaction between the incident plane wave and the modulated metasurface. Here, we first describe analytically how to generate the desired higher-order harmonics in the reflected spectrum and how to realize the breaking of the spatial symmetry of each order harmonic scattering pattern. Then, the one dimensional (1D) omnidirectional incident angle can be analytically computed using +1st and -1st order harmonics. The approach is also extended to 2D DoA estimation by using two orthogonally arranged 1D DoA modulation arrays. The accuracy of 1D DoA estimation is verified through full-wave numerical simulations. Compared to conventional DoA estimation methods, the proposed approach simplifies the computation and hardware complexity, ensuring at the same time estimation accuracy. The proposed method may have potential applications in wireless communications, target recognition, and identification.


Sign in / Sign up

Export Citation Format

Share Document