Research on space-time coupling action laws of anchor-cable strengthening supporting for rock roadway in deep coal mine

2012 ◽  
Vol 18 (2) ◽  
pp. 113-117
Author(s):  
Ju-cai Chang ◽  
Guang-xiang Xie
2011 ◽  
Vol 255-260 ◽  
pp. 3711-3716 ◽  
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Numerical simulation and field measurement were carried out to investigate into laws of deformation and movement and the evolving characteristics of the plastic region around the roadway based on engineering conditions of deep soft rock roadway in Wangfenggang colliery, Huainan Mining area. The mechanism of controlling the surrounding rock stability of soft rock roadway in deep coal mine was demonstrated. The supporting of soft rock roadway in deep coal mine must be compatible with deformation and failure characteristics of surrounding rock, and it can keep the stability of surrounding rock. The combined supporting with high strength and prestress bolting-anchoring and integral surrounding rock grouting reinforcement can effectively control the surrounding rock deformation of soft rock roadway in deep coal mine. But every working step must be pay attention to sequence on the time and space so that it can play an integral supporting effect. Research results are put into practice accordingly and good control effect has been achieved.


2012 ◽  
Vol 170-173 ◽  
pp. 1392-1396
Author(s):  
Wei Zhang ◽  
Shi Hai Chen

To keep the stability of tunnel’s surrounding rock, and control the deformation of surrounding rocks and reduce the maintenance cost of tunnel in maximum, this article did the following aspects. Aiming at large pressure , large deformation , bad maintenance state in deep coal mine tunnel , joint cable anchor support technology is adopted , and the coordination deformation of tunnel is accomplished through anchor net-surrounding rock and its coupling with the anchor cable .Through the theoretical calculation and numerical simulation of cable anchor coupling support ,we determine reasonable technology coefficient of bolt supporting and verify the correctness of support coefficient by field observation.


2011 ◽  
Vol 396-398 ◽  
pp. 516-519
Author(s):  
Yi Zhang ◽  
Dong Ming Guo ◽  
Li Meng

With the deep mining in coal mine, heat damage is one of the technical issues need to be solved. HEMS cooling system in Sanhejian Coal Mine is a process system for high-temperature heat damage controlling in deep coal mine, in which cool energy extracted to reduce work face’s ambient temperature to achieve heat damage controlling. Part of the cool energy is from the level circulating of cooling water in -700 level main raodway, the other is from the mine water. We analyze the energy consumption of every subsystem during operation of the HEMS system, which could provide a theoretical basis and technical guidance on more efficiently running of cooling system deep in the future.


2013 ◽  
Vol 838-841 ◽  
pp. 1884-1890 ◽  
Author(s):  
Guang Long Qu ◽  
Yan Fa Gao ◽  
Liu Yang ◽  
Bin Jing Xu ◽  
Guo Lei Liu ◽  
...  

Compared with I-shaped and U-shaped supports in soft rock roadway, concrete-filled steel tubular (CFST) support, as a new supporting form, has stronger bearing capacity with reasonable price. So it is becoming more and more popular in roadway supporting of coal mine in China. In this article, the surrounding rock in soft rock roadway was classified into three different types: hard rock in deep coal mine, soft surrounding rock, extremely soft surrounding rock. And, according to the characteristics of deformation failure of the CFST support and the surrounding rock in the industrial tests, three different strength assessments, including assessment of axial compressive strength, assessment of lateral flexural performance, assessment of hardening rate of core concrete, were proposed through mechanical analysis and laboratory tests for the three different types of the surrounding rock, respectively. Moreover, aimed to insufficient flexural strength of the support or low hardening rate of the core concrete in some of the roadway supporting, strengthening lateral flexural performance or making early strength concrete was necessary for the above unfavorable situations. The laboratory test results showed that the ultimate bearing capacity for the CFST support with φ194*8mm of steel tube reinforced by φ38mm round steel was 31% greater than that of the unreinforced one, 177% greater than that of the U-shaped one with equivalent weight per unit length.


2017 ◽  
Vol 81 ◽  
pp. 155-177 ◽  
Author(s):  
Q. Wang ◽  
R. Pan ◽  
B. Jiang ◽  
S.C. Li ◽  
M.C. He ◽  
...  

2011 ◽  
Vol 243-249 ◽  
pp. 2666-2669
Author(s):  
Zhan Jin Li ◽  
Yang Zhang ◽  
Xue Li Zhao

With the depth increasing continuously, more complicated of geological conditions, will make intersection in deep soft rock roadway is very difficult to support. In order to solve the intersection problem of difficult to support, combined with the third levels of the Fifth Coal Mine of Hemei, the coupling supporting design—anchor-mesh-cable + truss to control stability of crossing point—is proposed. Based software of FLAC3D, simulate the program applicable in deep soft rock roadway intersection. Application results show that the coupling support technology of anchor-mesh-cable + truss can effectively control the deformation of intersection in deep soft rock roadway.


Sign in / Sign up

Export Citation Format

Share Document