Study on the Technology Coefficient of Supporting for Deep Coal Mine Tunnels

2012 ◽  
Vol 170-173 ◽  
pp. 1392-1396
Author(s):  
Wei Zhang ◽  
Shi Hai Chen

To keep the stability of tunnel’s surrounding rock, and control the deformation of surrounding rocks and reduce the maintenance cost of tunnel in maximum, this article did the following aspects. Aiming at large pressure , large deformation , bad maintenance state in deep coal mine tunnel , joint cable anchor support technology is adopted , and the coordination deformation of tunnel is accomplished through anchor net-surrounding rock and its coupling with the anchor cable .Through the theoretical calculation and numerical simulation of cable anchor coupling support ,we determine reasonable technology coefficient of bolt supporting and verify the correctness of support coefficient by field observation.

2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Weijian Yu ◽  
Fangfang Liu

The purpose of this paper is to solve the problem that deep and close-distance cavern and roadway group were easily affected by the adjacent chamber or roadway excavation disturbance and low stability and significant deformation of surrounding rock occurred. The stability and control technology of surrounding rock in the main shaft and auxiliary shaft system has been analyzed by the adjacent chamber and roadway group of −850 m level in Qujiang Mine, China, as an engineering background. Firstly, the numerical calculation of the excavation chamber was, respectively, carried out in different ways with the propagation theory of the excavation disturbance wave. The results show that the interaction of adjacent chamber excavation was more intense. When excavated at the same time, there is a large increase in the movement of the sides and the roof-floor of the chamber and roadway. Then, the mechanism of interaction between low-high stress and excavation disturbance was considered, the corresponding control principles were provided, and a set of critical technologies and equipment were designed according to the deformation characteristics of the large deformation soft surrounding rock. Finally, the comprehensive control method was put forward with the water pump house as an example, that is, anchor, metal net, grouting, combined anchor cable and large-diameter anchor cable. And the related support parameters were determined by the internal damage of the surrounding rock chamber. The numerical simulation results show that the surrounding rock deformation of the chamber and roadway reduced with the revised support program, which the expansion of the rock mass loose circle prevented effectively. The site test shows that the convergence rate of surrounding rock with the improved support was less than 0.2 mm/d, and the rock deformation of chamber and roadway suppressed significantly.


2012 ◽  
Vol 170-173 ◽  
pp. 3512-3515
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Prestressed anchor-cables supporting technology has become the primary measure for reinforcing the roadway of deep coal mine and complex geological conditions. In this paper, fast Lagrangian analysis of continua (FLAC3D) code is used to analyze the laws of stress, deformation and failure of surrounding rock with and without roadway supporting by anchor-cables. The supporting action mechanism and effect of anchor-cables have been investigated into systematically. The results show that the anchor-cables supporting is adopted at reasonable positions of the roadway in good time which can improve the stress states of deep surrounding rock, decrease the range of failure zone around the roadway, control the roadway deformation effectively and maintain the stability of roadway.


2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Mingze Du ◽  
Yanchun Xu ◽  
Heng Duan ◽  
Wen Li

The hydrophobicity of the aquifer at the bottom of the porous alluvium will affect the stability of the shaft. According to the changes of water level and the compressive amount of alluvium, we can evaluate the shaft stability and predict the shaft failure. In this work, the simulation model of the auxiliary shaft in the Zhuxianzhuang Coal Mine is generated by using the Nsdc software to evaluate the stability of the shaft during drastic drawdown dewatering. Based on the measured hydrophobic compression ratio in an adjacent coal mine, the compressive amounts of the strata near the main and auxiliary shafts in the Zhuxianzhuang Coal Mine are predicted under the condition of drastic drawdown dewatering, which will be 249.69 mm and 302.75 mm, respectively. It is more likely that the shaft wall may fracture in the 15th day (fourth load level) under the condition of drastic drawdown dewatering. The formation compressive amount near the auxiliary shaft is approximately 320 mm, which is close to the measured predicted value. At the same time, the Fisher discriminant model is established, and it is predicted that the state of the main and auxiliary shafts will be failure under the conditions of drastic drawdown dewatering in the Zhuxianzhuang Coal Mine. Based on the simulating results, the technical means of using the ground grouting for early prevention and control is proposed.


2019 ◽  
Vol 9 (13) ◽  
pp. 2588 ◽  
Author(s):  
Jing Wang ◽  
Liping Li ◽  
Shaoshuai Shi ◽  
Shangqu Sun ◽  
Xingzhi Ba ◽  
...  

A large number of subway projects need to cross all kinds of disaster sources during the construction process. When a disaster source is unknown and uncertain, it is difficult for tunnel stability analysis to conform to the actual situation, which is likely to cause serious geological disasters. Firstly, the accurate location of the source of the disaster is realized via the geophysical method, and the orientation of the target is determined. Secondly, real imaging of the geological disaster source is realized using fine three-dimensional scanning equipment. Finally, the coupling law of the seepage field, displacement field, and stress field of the tunnel surrounding rock are analyzed. The stability of the tunnel is analyzed, and the reasonable karst treatment method is put forward.


2013 ◽  
Vol 353-356 ◽  
pp. 751-755 ◽  
Author(s):  
Yong Cheng Yan ◽  
Xian Zhang Ling ◽  
Feng Zhang ◽  
Jia Hui Wang

Taking section W400 of Fushun west open-pit coal mine for the research, the interface model of fracture zone and surrounding rock was established. FLAC3D is used to analysis the influence of excavation and backfill of open-fit coal mine to the slope stability and deformation. The numerical results and analysis show that: (1) when the open-pit coal mine slope is excavated to final production line, the safety coefficient is 2.98, with the excavation, the deformation of the Fushun No.1 Refinery Factory area increases. (2) With the increase of backfilling, the slope coefficient increases to 3.32, this will reduce the deformation of the Fushun No.1 Refinery Factory area. Furthermore, the positions of the dangerous slip surface and serious deformation part of factory area should be regards as key areas. These conclusions could provide technical basis for the stability analysis of Fushun west open-pit coal mine.


2013 ◽  
Vol 353-356 ◽  
pp. 303-306
Author(s):  
Zhi Chao Tian ◽  
Long Hao Dong ◽  
Min Ma ◽  
Ye Jiao Liu

According to the actual monitoring data of mining environment and rock burst happening on the 3511 fully-mechanized workface in Anyuan coal mine, the research of the rock burst on the workface and its surrounding rock of gob-side entry is done and the reasonable supporting scheme is determined. The research results are of great guiding importance to the coal mining that has similar condition, provide scientific basis for the control technology of rock burst on the workface and its gob-side entry as well as the reasonable identification of support parameters on the gob-side tunnel, and supply technology protection in order to accelerate the advancing speed of workface. Finally it can produce larger economic benefit.


2021 ◽  
Vol 236 ◽  
pp. 03026
Author(s):  
Li Yongyu ◽  
Wang Yu ◽  
Wang Shihua

The deformation of tunnel surrounding rock is the key factor to analyze the stability of surrounding rock. However, due to the influence of many factors and the strong non-linear relationship between the factors, it is difficult to predict the deformation effectively. In this paper, a method based on cellular ant neural network model is proposed to simulate the displacement of surrounding rock with time. The results show that this method is efficient and feasible, and can meet the requirements of engineering and control.


Sign in / Sign up

Export Citation Format

Share Document