Shaking table tests to parametrically evaluate post-shaking settlements and pore water pressure build-up in marine sands

2021 ◽  
Vol 14 (8) ◽  
Author(s):  
Ali Ghorbani ◽  
Afshar Nemati Mersa ◽  
Mehdi Veiskarami ◽  
Naser Hamidzadeh ◽  
Hadi Hasanzadehshooiili
2010 ◽  
Vol 163-167 ◽  
pp. 4048-4057
Author(s):  
Pei Zhen Li ◽  
Da Ming Zeng ◽  
Sheng Long Cui ◽  
Xi Lin Lu

Using the parameter identification method of analysis on the test records of soil acceleration and pore water pressure from the shaking table tests for dynamic liquefiable soil-pile-structure interaction system, the dynamic properties of soil are obtained. Based on the recognized soil parameters, numerical simulation of liquefiable soil-pile-structure interaction test has been carried out. The results of the comparision of acceleration response and pore water pressure obtained from numerical simulation and tests show that the rule drawn from the numerical simulation is agreed well with those from the tests, though there are some disparities in quantity. So the reliability of parameter identification and numerical simulation technology in shaking table tests is validated. The result in this dissertation can be referred for future similar research.


2021 ◽  
Vol 21 (3) ◽  
pp. 151-161
Author(s):  
Younghak Lee ◽  
Junghyun Ryu ◽  
Bora Yoon ◽  
Joon Heo ◽  
Dalwon Lee

In this study, shaking table tests were performed to compare and analyze the acceleration response, displacement behavior, and pore-water pressure behavior of reservoirs with parapets installed to prevent overtopping of deteriorative homogeneous reservoirs. During the shaking table tests, the experimental conditions were divided into four cases considering the range and magnitude of seismic acceleration according to national standards. The vibration-type waveform (Gongen) and shock-type waveform (Minogawa) were applied as input waveforms. The acceleration amplification ratios of both vibration- and shock-wave types were the largest in the dam crest, and the amplification ratio decreased as the design earthquake acceleration increased. In addition, the horizontal displacement was maximum on the upstream slope, owing to the influence of seepage water, and the vertical displacement was maximum on the dam crest, owing to the self-weight effect of the parapet structure. A comparison of the waveform results indicates that the vibration-type waveform may exhibit a more significant effect on the embankment zone displacement than the shock-type waveform. However, when the safety standards for the horizontal displacement, settlement ratio, and excess pore-water pressure ratio were applied, the embankment was stable within the allowable range in both the shock-type and vibration-type waveforms. Therefore, the parapet structure is expected to influence the overflow resistance and stability of embankments positively.


2021 ◽  
Vol 27 (12) ◽  
pp. 1-12
Author(s):  
Haider N. Abdul Hussein ◽  
Qassun S. Mohammed Shafiqu ◽  
Zeyad S. M. Khaled

Experimental model was done for pile model of L / D = 25 installed into a laminar shear box contains different saturation soil densities (loose and dense sand) to evaluate the variation of pore water pressure before and after apply seismic loading. Two pore water pressure transducers placed at position near the middle and bottom of pile model to evaluate the pore water pressure during pullout tests. Seismic loading applied by uniaxial shaking table device, while the pullout tests were conducted through pullout device. The results of changing pore water pressure showed that the variation of pore water pressure near the bottom of pile is more than variation near the middle of pile in all tests. The variation of pore water pressure after apply seismic loading is more than the variation before apply seismic loading near the middle of pile and near the bottom of pile and in loose and dense sand. Variation of pore water pressure after apply seismic loading and uplift force is less than the variation after apply seismic loading in loose sand at middle and bottom of pile.


2021 ◽  
Author(s):  
Duaa Al-Jeznawi ◽  
ISMACAHYADI Mohamed Jais ◽  
Bushra S. Albusoda

Abstract Liquefaction of saturated soil layers is one of the most common causes of structural failure during earthquakes. Liquefaction occurs as a result of increasing pore water pressure, whereby the rise in water pressure occurs due to unexpected change in stress state under short-term loading, i.e., shaking during an earthquake. Thus, general failure occurs when the soil softens and eliminates its stiffness against the uplift pressure from the stability of the subsurface structure. In this case, the condition of soil strata is considered undrained because there is not enough time for the excess pore water pressure to dissipate when a sudden load is applied. To represent the non-linear characteristics of saturated sand under seismic motions in Kobe and Ali Algharbi earthquakes, the computational model was simulated using the UBCSAND model. The current study was carried out by adopting three-dimensional-based finite element models that were evaluated by shaking table tests of a single pile model erected in the saturated soil layers. The experimental data were utilized to estimate the liquefaction and seismicity of soil deposits. According to the results obtained from the physical models and simulations, this proposed model accurately simulates the liquefaction phenomenon and soil-pile response. However, there are some differences between the experiment and the computational analyses. Nonetheless, the results showed good agreement with the general trend in terms of deformation, acceleration, and liquefaction ratio. Moreover, the displacement of liquefied soil around the pile was captured by the directions of vectors generated by numerical analysis, which resembled a worldwide circular flow pattern. The results revealed that during the dynamic excitation, increased pore water pressure and subsequent liquefaction caused a significant reduction in pile frictional resistance. Despite this, positive frictional resistance was noticed through the loose sand layer (near the ground surface) until the soil softened completely. It is worth mentioning that the pile exhibited excessive settlement which may attribute to the considerable reduction, in the end, bearing forces which in turn mobilizing extra end resistance.


2020 ◽  
Vol 331 ◽  
pp. 02002
Author(s):  
Masaho Yoshida ◽  
Taiga Katsumi ◽  
Hajime Kawasaki

Small scale shaking table tests in a 1-g gravity field were carried out to evaluate effectiveness of a deformation mitigation method for an existing road embankment during liquefaction by using geosynthetics sandwiched between gravel layer and a gabion. The gravel layer could dissipate an excess pore water pressure during liquefaction immediately, and perform as a rigid plate below a slope of embankment. Furthermore, the gabion could confine the slope of embankment and restrain the lateral movement of slope. As a result, these functions could restrain the deformation of embankment, and keep the shape of embankment and flatness of crest.


2016 ◽  
Vol 53 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Behnam Ferdosi ◽  
Michael James ◽  
Michel Aubertin

Several tailings impoundments have failed as a result of earthquakes in the last few decades. A majority of these failures were due to direct seismic loading, tailings liquefaction during shaking, or the post-seismic behavior of the tailings as it relates to the dissipation of excess pore-water pressures that were generated during shaking. Previous work has indicated that the UBCSAND model developed by Byrne et al. in 1995 is capable of simulating the cyclic simple shear testing response of low-plasticity tailings over a range of consolidation stresses and cyclic shear ratios. However, the ability of the model to simulate the dynamic and subsequent behavior of such tailings for other conditions, such those induced by shaking table tests, has not yet been evaluated. In this regard, previous work has shown that the main components of the UBCSAND model cannot realistically simulate some specific responses, including the post-seismic volumetric strains related to excess pore-water pressure dissipation. This paper presents numerical modeling results of the dynamic behavior of tailings from hard rock mines. It introduces a method for simulating their post-seismic behavior by including an updating scheme for the elastic moduli into the UBCSAND model. The results of cyclic simple shear testing, seismic table testing, and complementary experimental relationships were used to calibrate and validate the model with its new component. The simulated response of tailings during cyclic simple shear testing and for a complete seismic table test shows that the proposed approach simulates the experimental observations well. Level-ground, seismically induced liquefaction and post-seismic behavior of a 15 m thick tailings deposit are also simulated, leading to post-liquefaction settlements that are in agreement with empirical relationships.


1988 ◽  
Vol 110 (1) ◽  
pp. 17-23 ◽  
Author(s):  
N. Mori ◽  
Y. Ishikawa ◽  
A. Hirayama ◽  
K. Tamaoki ◽  
H. Kobayashi

Offshore structures are subjected to repeated loads from earthquakes and waves which may cause softening of the clayey seabed foundation. Carrying out a series of model tests on a shaking table, the following results are obtained. Settlement and inclination of a model of the base-part of the structure occur when the excess pore water pressure beneath the model rises to about 5 percent of the initial confining pressure. The earthquake response analysis even taking the nonlinearity of the soil into account cannot predict the results of the model test when the pore water pressure does generate and accumulate. Model tests show that the values of the pore water pressure are about twice as large as those predicted by calculation. From these results, rough evaluation of earthquake stability of the clayey seabed under offshore structures are obtained.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fahad Alshawmar ◽  
Mamadou Fall

AbstractIn this study, an instrumented thickened tailings deposit model was designed, built and employed to evaluate the behaviour of layered thickened tailings to dynamic loading by using a shaking table equipment. The thickened tailings were deposited subsequently in three thin layers in a flexible laminar shear box mounted on top of the shaking table. Cyclic loading with a peak horizontal acceleration of 0.13 g and a frequency of 1 Hz was applied to the layered tailings deposit. Different types of sensors were placed to monitor the accelerations, displacements, volumetric water content and pore water pressures at the intermediate depth of each layer. Results indicated that the acceleration for the bottom and middle layers were similar to that of the base of the shaking table; but, this was not the case for the top layer. The measurements of vertical displacements indicated that all layers of thickened tailings experienced initially contraction and subsequently dilation during the shaking. The excess pore water pressure ratios were found to exceed unity through all layers of thickened tailings when the shaking ended. In other words, the results showed that the layered thickened tailings are susceptible to liquefaction under the considered testing conditions. It is also found that upward pore water migration to the top layer and downward pore water flow to the bottom layer occurred in the thickened tailings deposit. This water migration generated additional pore water pressure and also impacted the vertical displacement and liquefaction susceptibility of the thickened tailings material. The results of this study give a better understanding of the dynamic behaviour of thickened tailings, which is crucial for the safety of thickened tailings systems as well as sustainable mining.


Sign in / Sign up

Export Citation Format

Share Document