Effect of Asymmetric Hot Rolling on the Texture Evolution of Fe–3%Si Steel

2018 ◽  
Vol 24 (6) ◽  
pp. 1369-1375
Author(s):  
Tae-Wook Na ◽  
Hyung-Ki Park ◽  
Chang-Soo Park ◽  
Hyung-Don Joo ◽  
Jong-Tae Park ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Snehashish Tripathy ◽  
Sandip Ghosh Chowdhury

AbstractA novel directional inoculation technique has been designed to cast thin slab ingots containing Goss (or near Goss) oriented components in the as cast microstructure under the combined effect of oriented nucleation and oriented growth. The same has been targeted so as to retain Goss orientations and simultaneously develop γ fiber components (ranging from {111}<$$1\overline{1}0$$ 1 1 ¯ 0 > to {111}<112>) during hot rolling. The designed scheme of directional inoculation achieved oriented nucleation by the effect of exogenously added soft magnetic inoculants under magnetic field and oriented growth by the effect of fast cooling rates prevailing in the mould. The choice of 65Fe–35Co (wt%) system as soft magnetic inoculants was made taking into account the similarity in crystal structure and lattice parameter. The chemically synthesized inoculants under the effect of external magnetic field during solidification were able to exhibit directional inoculation. Variation in the cast microstructure and microtexture by varying the extent of inoculant addition was studied by EBSD technique. The ingots cast under different conditions were subjected to a designed hot rolling schedule and the through process microstructural and microtextural evolution was assessed. It was observed that fine equiaxed grains with initial cube orientations in the as cast structure could lead to the most desirable microstructural as well as microtextural gradient in the hot band.


2013 ◽  
Vol 582 ◽  
pp. 194-202 ◽  
Author(s):  
W.X. Wu ◽  
L. Jin ◽  
F.H. Wang ◽  
J. Sun ◽  
Z.Y. Zhang ◽  
...  

2020 ◽  
Vol 827 ◽  
pp. 154254 ◽  
Author(s):  
Fei Liu ◽  
Zhiyi Liu ◽  
Pengxiang Jia ◽  
Song Bai ◽  
Pengfei Yan ◽  
...  

2007 ◽  
Vol 550 ◽  
pp. 557-562 ◽  
Author(s):  
Lucia Suarez ◽  
Roumen H. Petrov ◽  
Leo Kestens ◽  
M. Lamberigts ◽  
Yvan Houbaert

Thin tertiary scale layers have been grown on ULC steel specimens under controlled conditions. After heating under a protective atmosphere (nitrogen), the samples have been oxidised in air for various oxidation times at 1050°C. These experiments are considered a quantitatively and qualitatively reasonable simulation of the scale formation and growth occurring before hot rolling. Immediately after controlled oxidation, some of the samples were subjected to plane strain compression, in order to simulate the finishing hot rolling process. This approach provided a better insight into the deformation behaviour of the tertiary oxide layer in the first hot rolling pass. The layers produced were examined under the SEM using the EBSD technique for texture characterisation and phase morphology determination. The texture of the deformed oxide scales, originally grown on ULC steel at 1050°C, was determined in order to achieve a better understanding of their complex deformation behaviour. This paper gives a first approach of the study of deformed oxides by EBSD. Strongly textured wustite grains with a clearly pronounced columnar structure were observed after oxidation at 1050°C. As the substrate deformation probably affects the oxide layer, orientation relationships between scale layer and substrate were observed. The detailed EBSD study reveals that the oxide layer can accommodate a significant amount of deformation. The oxide layers exhibit good adhesion to the substrate and remain homogeneous over the thickness after compression.


2005 ◽  
Vol 495-497 ◽  
pp. 937-944 ◽  
Author(s):  
Franz Roters ◽  
Heyon S. Jeon-Haurand ◽  
Dierk Raabe

Crystal plasticity FEM simulations of plane strain compression were performed. The Texture Component Crystal Plasticity-FEM was used for the texture mapping. Two different starting textures (random and hot rolling texture) were studied using four different FE meshes and two different sets of boundary conditions. While for the random starting texture the evolution of the texture with deformation was found to be rather similar in all cases studied, the simulations using an experimental hot rolling texture as staring texture are much more sensitive to the boundary conditions and probably also to changes in the mesh geometry.


2020 ◽  
Vol 12 (5) ◽  
pp. 685-692 ◽  
Author(s):  
Jia Yao ◽  
Min Zha ◽  
Huiyuan Wang ◽  
Wei Lu

This study was aimed at revealing the influence of Al and Zn additions on microstructure, texture evolution and mechanical properties of twin roll casting Mg during multi-pass hot rolling. Firstly, both pure Mg and AZ31 sheets were rolled 9 passes with ∼80% thickness reduction. More effective grain refinement in AZ31 compared to pure Mg after hot rolling, which caused by the pinning effect from fine Mg17Al12 particles present in AZ31 alloy. Meanwhile a strong basal texture gradually formed with increasing thickness reduction in pure Mg. With Al and Zn adding, the texture intensity of AZ31 was much lower than pure Mg in each rolling-pass. The 5th AZ31 sample features a maximum intensity of ∼12.9, which is reduced by 50.6% as compared to the value of ∼26.1 for pure Mg. Compared to pure Mg, the Al and Zn solutes and weakened texture in AZ31 favor the strong work hardening, which promotes a simultaneous high ultimate tensile strength of ∼270 MPa and ductility of ∼22% in the 5th AZ31 sample. The results will be helpful for the TRCed Mg alloys with huge potential for industrial application.


2016 ◽  
Vol 852 ◽  
pp. 101-104 ◽  
Author(s):  
Wen Qiang Liu ◽  
Cheng Shuai Lei ◽  
Han Mei Tang ◽  
Hong Yu Song ◽  
Hai Tao Liu

The microstructure and texture evolution of the as-cast and hot rolled grain-oriented silicon steel strips was investigated, and the precipitation of the inhibitors of the hot rolled strips was clarified. The results showed that the microstructure of the as-cast strip was characterized by coarse columnar grains with strong {001}<0vw> fiber texture. The microstructure of hot rolled strips was composed of ferrite and pearlite and the microstructure was gradually refined with increasing hot rolling reduction. In the hot rolled strips, α and γ fiber textures were enhanced at the expense of initial {001}<0vw> fiber texture and Goss texture was generated in the surface and sub-surface layer with increasing hot rolling reduction. Besides, a great number of dispersed MnS particles with the size of 20-30nm were observed in the hot rolled strips. These MnS particles could act as the effective inhibitors during the second recrystallization annealing of the grain-oriented silicon steel.


Sign in / Sign up

Export Citation Format

Share Document