Mechanical Strength Behaviour of Silane Treated E-glass Fibre/Al 6061 & SS-304 Wire Mesh Reinforced Epoxy Resin Hybrid Composite

Silicon ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 2279-2286 ◽  
Author(s):  
V. R. Arun Prakash ◽  
S. Julyes Jaisingh
Silicon ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 2487-2498 ◽  
Author(s):  
T. Dinesh ◽  
A. Kadirvel ◽  
Arunprakash Vincent

2010 ◽  
Vol 43 (2) ◽  
pp. 25
Author(s):  
Ishtiaq Ahmed Khan ◽  
Ravinder Reddy ◽  
ACS Kumar ◽  
Yatin Tambe

2008 ◽  
Vol 589 ◽  
pp. 421-425 ◽  
Author(s):  
Norbert Krisztián Kovács ◽  
József Gábor Kovács

Characteristics of 3D printed specimens are porous structure and low mechanical strength. Due to porous structure post treatment is possible, and in most cases infiltration with an epoxy resin, wax or cyanoacrylate material takes place. As a result of post treatment, the mechanical strength can be increased by 100%, although this is strongly influenced by the infiltration depth that depends on the porous structure and the resin viscosity. In the framework of the common research of the Department of Polymer Engineering, BME and Varinex Zrt. the applicability of a 3D printer is examined in the field of direct tool making. As the first step, the resin uptake ability of specimens prepared with a Z810 3D printer is examined.


2021 ◽  
Vol 58 (3) ◽  
pp. 137-147
Author(s):  
Pradeep Kumar Seethakaran ◽  
Gopalakrishnan Prabhakaran ◽  
Paulraj Jawahar

The investigation on the effect of adding silane modified chopped E-glass fibre and Aluminium metal wire-mesh into nano silica toughened nylon 6-6 thermoplastic composites on mechanical, drop load impact, fatigue and tribological behaviour is studied in this paper. The primary aim of this research work is to develop a hybrid Nylon 6-6 nanocomposites having high stiffness, toughness and wear resistance. The chopped glass fibre and Al wire-mesh was surface treated with the help of 3-Aminopropyletrimethoxylane (silane) and acid etching. The tensile results revealed that additions of glass fibre and Al mesh into nano - silica toughened nylon 6-6 composite gives improved tensile and flexural strength. Similarly, the Izod impact strength of Al-mesh reinforced nano silica (1vol.%) toughened nylon 6-6 gives superior energy absorption up to 6 Joules/cm. The drop load impact penetration of composite N3 (59% - Nylon 66, 20% - E-glass fibre, 20% - Al wire mesh and 1 % - nano silica) shows very limited penetration than other composites. Highest fatigue life of 16391 cycles was observed for the composite designated N3, which contains 1 vol.% of nano silica, whereas the composite containing 2 vol.% of nano silica gives very lower specific wear rate and Co-efficient of friction. The developed composite which has better modulus, stiffness, wear resistance and fatigue life could be possibly used in automobile power transmission gears, domestic equipment and farm related machineries.


1973 ◽  
Vol 15 (2) ◽  
pp. 102-108 ◽  
Author(s):  
R. M. Ogorkiewicz

Deformational characteristics of laminates of unidirectionally arranged glass fibres and epoxy resin under plane stress are shown to correspond very closely under uniaxial tension and, to a lesser extent, under shear to the theroetical pattern of stiffness of an orthotropic material. The anisotropy in stiffness is also shown to be accompanied by an even greater degree of anisotropy in tensile strength.


2021 ◽  
Vol 1165 ◽  
pp. 47-64
Author(s):  
Saurabh S. Kumar ◽  
Rajesh G. Babu ◽  
U. Magarajan

In this paper, the post ballistic impact behaviour of kevlar-glass fibre hybrid composite laminates was investigated against 9×19 mm projectile. Eight different types of composite laminates with different ratios of kevlar woven fibre to glass fibre were fabricated using hand lay-up with epoxy matrix. Ballistic behaviour like ballistic Limit (V50), energy absorption, specific energy absorption and Back Face Signature (BFS) were studied after bullet impact. The results indicated that as the Percentage of glass fibre is increased there was a linear increment in the ballistic behaviour. Addition of 16% kevlar fabric, composite sample meets the performance requirement of NIJ0101.06 Level III-A. Since the maximum specific energy absorption was observed in Pure Kevlar samples and the adding of glass fibre increases the weight and Areal Density of the sample, further investigations need to be carried out to utilize the potential of glass fibre for ballistic applications.


Sign in / Sign up

Export Citation Format

Share Document