Analytical Modeling of Diffusion of Moisture in Silicon Photovoltaic Module under Damp Heat Testing Condition

Silicon ◽  
2021 ◽  
Author(s):  
Shikha Marwaha ◽  
Kunal Ghosh
2018 ◽  
Vol 49 (5) ◽  
pp. 385-394 ◽  
Author(s):  
Najlawi Bilel ◽  
Nejlaoui Mohamed

Agrotek ◽  
2018 ◽  
Vol 2 (6) ◽  
Author(s):  
Wilson Palelingan Aman

<em>A research about cocoa beans drying used solar tunnel dryer with photovoltaic module driven have conducted in Manokwari. Solar tunnel dryer used in this research adapted from type Hohenheim with photovoltaic module and integrated air heat collector has been installed at the Department of Agricultural Technology, Papua State University Manokwari to dried cocoa beans. The objectives of this research were to design solar tunnel dryer and evaluate it�s performance in dryed cocoa beans. The result obtained was a new construction of solar tunnel dryer for cocoa beans with dimensions 6 m of length and 0,9 m of wide. The dryer completed with photovoltaic module to drive the blowers of hot drying air. �Performance test of the dryer showed that drying of 10 kg of cocoa beans with initial moisture content about 70% wet basis needed 13 hours of drying time to achieved final moisture content about 7,17% wet basis. The drying time achieved was faster compared than traditional solar drying that needed 20 hours of drying time. The maximum temperature achieved in drying chamber was 60 <sup>o</sup>C.</em>


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


2005 ◽  
Author(s):  
Paul A. Durbin ◽  
John K. Eaton ◽  
Greg Laskowski ◽  
Amanda Vicharelli

2017 ◽  
Vol 9 (6) ◽  
pp. 06009-1-06009-4 ◽  
Author(s):  
Nitin Sachdeva ◽  
◽  
Munish Vashishath ◽  
P. K. Bansal ◽  
◽  
...  

2020 ◽  
Vol 4 (41) ◽  
pp. 51-56
Author(s):  
DMITRIY STREBKOV ◽  
◽  
NATAL’YA FILIPPCHENKOVA ◽  

In the field of energy supply to agro-industrial facilities, there is an increasing interest in the development of structures and engineering systems using renewable energy sources, including solar concentrator thermal and photovoltaic modules that combine photovoltaic modules and solar collectors in one structure. The use of the technology of concentrator heat and photovoltaic modules makes it possible to increase the electrical performance of solar cells by cooling them during operation, and significantly reduces the need for centralized electricity and heat supply to enterprises of the agroindustrial complex. (Research purpose) The research purpose is in numerical modeling of thermal processes occurring in a solar concentrator heat-photovoltaic module. (Materials and methods) Authors used analytical methods for mathematical modeling of a solar concentrator heat and photovoltaic module. Authors implemented a mathematical model of a solar concentrator heat and photovoltaic module in the ANSYS Fluent computer program. The distribution contours of temperature and pressure of the coolant in the module channel were obtained for different values of the coolant flow rate at the inlet. The verification of the developed model of the module on the basis of data obtained in an analytical way has been performed. (Results and discussion) The results of comparing the calculated data with the results of computer modeling show a high convergence of the information obtained with the use of a computer model, the relative error is within acceptable limits. (Conclusions) The developed design of the solar concentrator heat and photovoltaic module provides effective cooling of photovoltaic cells (the temperature of photovoltaic cells is in the operating range) with a module service life of at least twenty-five years. The use of a louvered heliostat in the developed design of a solar concentrator heat and photovoltaic module can double the performance of the concentrator.


Sign in / Sign up

Export Citation Format

Share Document