Numerical study and error estimation in power-law nanofluid flow over vertical frustum of a cone

Author(s):  
RamReddy Chetteti ◽  
Abhinava Srivastav
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Jawad ◽  
Anwar Saeed ◽  
Taza Gul ◽  
Zahir Shah ◽  
Poom Kumam

AbstractIn the current work, the unsteady thermal flow of Maxwell power-law nanofluid with Welan gum solution on a stretching surface has been considered. The flow is also exposed to Joule heating and magnetic effects. The Marangoni convection equation is also proposed for current investigation in light of the constitutive equations for the Maxwell power law model. For non-dimensionalization, a group of similar variables has been employed to obtain a set of ordinary differential equations. This set of dimensionless equations is then solved with the help of the homotopy analysis method (HAM). It has been established in this work that, the effects of momentum relaxation time upon the thickness of the film is quite obvious in comparison to heat relaxation time. It is also noticed in this work that improvement in the Marangoni convection process leads to a decline in the thickness of the fluid’s film.


2021 ◽  
Vol 28 ◽  
pp. 101370 ◽  
Author(s):  
Usman ◽  
Abuzar Ghaffari ◽  
Irfan Mustafa ◽  
Taseer Muhammad ◽  
Yasir Altaf

Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 363 ◽  
Author(s):  
Shuyan Deng

The hydrodynamic and thermal behavior of the electroosmotic flow of power-law nanofluid is studied. A modified Cauchy momentum equation governing the hydrodynamic behavior of power-law nanofluid flow in a rectangular microchannel is firstly developed. To explore the thermal behavior of power-law nanofluid flow, the energy equation is developed, which is coupled to the velocity field. A numerical algorithm based on the Crank–Nicolson method and compact difference schemes is proposed, whereby the velocity, temperature, and Nusselt number are computed for different parameters. A larger nanoparticle volume fraction significantly reduces the velocity and enhances the temperature regardless of the base fluid rheology. The Nusselt number increases with the flow behavior index and with electrokinetic width when considering the surface heating effect, which decreases with the Joule heating parameter. The heat transfer rate of electroosmotic flow is enhanced for shear thickening nanofluids or at a greater nanoparticle volume fraction.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 421
Author(s):  
Shuyan Deng ◽  
Quan An ◽  
Mingying Li

The non-Newtonian nanofluid flow becomes increasingly important in enhancing the thermal management efficiency of microscale devices and in promoting the exploration of the thermal-electric energy conversion process. The effect of streaming potential and viscous dissipation in the heat transfer characteristics of power-law nanofluid electrokinetic flow in a rectangular microchannel has been investigated to assist in the development of an energy harvesting system. The electroviscous effect caused by the streaming potential influences the hydrodynamical and thermal characteristics of flow. With the change in constitutive behavior of power-law nanofluid, the viscous dissipation effect is considered. The Poisson–Boltzmann equation, the modified Cauchy momentum equation, and the energy equation were solved. The temperature and heat transfer rate were analytically expressed for Newtonian nanofluid and numerically obtained for power-law nanofluid. The interactive influence of streaming potential, viscous dissipation, and hydrodynamical features of power-law nanofluid on the heat transfer characteristics were studied. The presence of streaming potential tends to reduce the dimensionless bulk mean temperature. The introduction of nanoparticles augments dimensionless temperature difference between channel wall and bulk flow, which decreases the heat transfer rate. The shear thinning nanofluid is more sensitive to the above effects. The temperature is a weak function of the flow behavior index.


2019 ◽  
Vol 8 (3) ◽  
pp. 5795-5802 ◽  

The main objective of this paper is to focus on a numerical study of viscous dissipation effect on the steady state flow of MHD Williamson nanofluid. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional PDEs (nonlinear) into coupled dimensionless ODEs. The numerical solution of these modeled ordinary differential equations (ODEs) is achieved by utilizing shooting technique together with Adams-Bashforth Moulton method of order four. Finally, the results of discussed for different parameters through graphs and tables.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bai Yu ◽  
Muhammad Ramzan ◽  
Saima Riasat ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
...  

AbstractThe nanofluids owing to their alluring attributes like enhanced thermal conductivity and better heat transfer characteristics have a vast variety of applications ranging from space technology to nuclear reactors etc. The present study highlights the Ostwald-de-Waele nanofluid flow past a rotating disk of variable thickness in a porous medium with a melting heat transfer phenomenon. The surface catalyzed reaction is added to the homogeneous-heterogeneous reaction that triggers the rate of the chemical reaction. The added feature of the variable thermal conductivity and the viscosity instead of their constant values also boosts the novelty of the undertaken problem. The modeled problem is erected in the form of a system of partial differential equations. Engaging similarity transformation, the set of ordinary differential equations are obtained. The coupled equations are numerically solved by using the bvp4c built-in MATLAB function. The drag coefficient and Nusselt number are plotted for arising parameters. The results revealed that increasing surface catalyzed parameter causes a decline in thermal profile more efficiently. Further, the power-law index is more influential than the variable thickness disk index. The numerical results show that variations in dimensionless thickness coefficient do not make any effect. However, increasing power-law index causing an upsurge in radial, axial, tangential, velocities, and thermal profile.


Sign in / Sign up

Export Citation Format

Share Document