scholarly journals Effect of Oil Content on Biogas Production, Process Performance and Stability of Food Waste Anaerobic Digestion

2017 ◽  
Vol 9 (12) ◽  
pp. 2295-2306 ◽  
Author(s):  
Olumide Wesley Awe ◽  
Jiaxin Lu ◽  
Shubiao Wu ◽  
Yaqian Zhao ◽  
Ange Nzihou ◽  
...  
2015 ◽  
Vol 768 ◽  
pp. 281-288
Author(s):  
Lian Hai Ren ◽  
Yan Bing Huang ◽  
Pan Wang

The variations of daily biogas yields, cumulative biogas yields, biogas composition analysis, total solids (TS) and volatile solids (VS) were studied in the process of mesophilic and dry anaerobic digestion of food waste under different oil contents (0%, 2%, 4%, 6%, 8%, 10%) at 35 °C. The gas production raised and then went down with the oil content, followed by 243.14, 245.64, 256.09, 269.25, 276.54, 284.22mL /g TS respectively. The research provided a reference for the pretreatment of food waste in follow-up continuous fermentation. Results showed that the period of the process of mesophilic dry anaerobic digestion under oil content of 0% was the shortest, with the total biogas production of 1275.5mL. During the process of the digestion, methane content of the biogas raised and then went down, up to a maximum of 77.62%. The removal rate of TS and VS in food waste with the oil content of 6% was the highest, obtained as 11.2% and 13.2%, respectively.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2018 ◽  
Vol 130 ◽  
pp. 1-9 ◽  
Author(s):  
Lei Li ◽  
Qin He ◽  
Xiaofei Zhao ◽  
Di Wu ◽  
Xiaoming Wang ◽  
...  

2018 ◽  
Vol 262 ◽  
pp. 148-158 ◽  
Author(s):  
Xuya Peng ◽  
ShangYi Zhang ◽  
Lei Li ◽  
Xiaofei Zhao ◽  
Yao Ma ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1487
Author(s):  
Vicky De Groof ◽  
Marta Coma ◽  
Tom C. Arnot ◽  
David J. Leak ◽  
Ana B. Lanham

Production of medium chain carboxylic acids (MCCA) as renewable feedstock bio-chemicals, from food waste (FW), requires complicated reactor configurations and supplementation of chemicals to achieve product selectivity. This study evaluated the manipulation of organic loading rate in an un-supplemented, single stage stirred tank reactor to steer an anaerobic digestion (AD) microbiome towards acidogenic fermentation (AF), and thence to chain elongation. Increasing substrate availability by switching to a FW feedstock with a higher COD stimulated chain elongation. The MCCA species n-caproic (10.1 ± 1.7 g L−1) and n-caprylic (2.9 ± 0.8 g L−1) acid were produced at concentrations comparable to more complex reactor set-ups. As a result, of the adjusted operating strategy, a more specialised microbiome developed containing several MCCA-producing bacteria, lactic acid-producing Olsenella spp. and hydrogenotrophic methanogens. By contrast, in an AD reactor that was operated in parallel to produce biogas, the retention times had to be doubled when fed with the high-COD FW to maintain biogas production. The AD microbiome comprised a diverse mixture of hydrolytic and acidogenic bacteria, and acetoclastic methanogens. The results suggest that manipulation of organic loading rate and food-to-microorganism ratio may be used as an operating strategy to direct an AD microbiome towards AF, and to stimulate chain elongation in FW fermentation, using a simple, un-supplemented stirred tank set-up. This outcome provides the opportunity to repurpose existing AD assets operating on food waste for biogas production, to produce potentially higher value MCCA products, via simple manipulation of the feeding strategy.


2020 ◽  
Vol 12 (12) ◽  
pp. 5222 ◽  
Author(s):  
A. Sinan Akturk ◽  
Goksel N. Demirer

The positive effects of conductive material supplementation on anaerobic digestion have been mainly investigated for single synthetic substrates, while its significance for real and complex organic wastes such as food waste has not been sufficiently investigated. This study investigated the effect of conductive material (biochar and magnetite) and trace metal supplementation on the anaerobic digestion of food waste by means of biochemical methane potential assays. The results indicated that the supplementation of biochar and trace metals improved both total biogas production and methane yields. A biochar dose of 2.0 and 5.0 g/L resulted in 11.2 ± 6.5 and 27.3 ± 9.5% increase in biogas and 8.3 ± 6.8 and 33.2 ± 2.8% increase in methane yield, respectively. Moreover, the same reactors demonstrated high food waste stabilization performance of over 80% chemical oxygen demand removal efficiency. These results indicate that biochar supplementation leads to more enhanced anaerobic digestion operation that could be through increased surface area for microbial growth and/or direct interspecies electron transfer mechanism. In turn, food waste will not only be stabilized but also valorized by anaerobic digestion at higher efficiencies that support sustainable waste management through both environmentally safe disposal and value-added generation.


2020 ◽  
Vol 188 ◽  
pp. 109743 ◽  
Author(s):  
Chen Linyi ◽  
Qin Yujie ◽  
Chen Buqing ◽  
Wu Chenglong ◽  
Zheng Shaohong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document